Maa atmosfääri paksus. Atmosfäär, selle koostis ja struktuur

Peab ütlema, et Maa atmosfääri struktuur ja koostis ei olnud meie planeedi ühel või teisel arenguperioodil alati püsivad väärtused. Täna vertikaalne struktuur seda elementi, mille kogupaksus on 1,5–2,0 tuhat km, esindavad mitmed põhikihid, sealhulgas:

  1. Troposfäär.
  2. Tropopaus.
  3. Stratosfäär.
  4. Stratopaus.
  5. Mesosfäär ja mesopaus.
  6. Termosfäär.
  7. Eksosfäär.

Atmosfääri põhielemendid

Troposfäär on kiht, milles täheldatakse tugevaid vertikaalseid ja horisontaalseid liikumisi; siin on ilm, setteilmingud, kliimatingimused. See ulatub 7-8 kilomeetri kaugusele planeedi pinnast peaaegu kõikjal, välja arvatud polaaralad (seal kuni 15 km). Troposfääris toimub temperatuuri järkjärguline langus, ligikaudu 6,4 ° C iga kõrguse kilomeetri kohta. See indikaator võib erinevatel laiuskraadidel ja aastaaegadel erineda.

Maa atmosfääri koostis selles osas on esindatud järgmiste elementide ja nende protsendimääradega:

Lämmastik - umbes 78 protsenti;

Hapnik - peaaegu 21 protsenti;

Argoon - umbes üks protsent;

Süsinikdioksiid - alla 0,05%.

Üksikkoosseis kuni 90 kilomeetri kõrgusele

Lisaks võib siit leida tolmu, veepiisku, veeauru, põlemisprodukte, jääkristalle, meresoolasid, palju aerosooliosakesi jne. Seda Maa atmosfääri koostist täheldatakse kuni ligikaudu üheksakümne kilomeetri kõrgusel, seega on õhk keemilise koostise poolest ligikaudu sama, mitte ainult troposfääris, vaid ka seda ületavates kihtides. Kuid seal on atmosfääril põhimõtteliselt erinevad füüsikalised omadused. Üldise keemilise koostisega kihti nimetatakse homosfääriks.

Millised muud elemendid moodustavad Maa atmosfääri? Protsentides (mahu järgi, kuivas õhus) gaasid nagu krüptoon (umbes 1,14 x 10 -4), ksenoon (8,7 x 10 -7), vesinik (5,0 x 10 -5), metaan (umbes 1,7 x 10 -5) on siin esindatud 4), dilämmastikoksiid (5,0 x 10 -5) jne Massiprotsendina on loetletud komponentidest enim dilämmastikoksiid ja vesinik, järgnevad heelium, krüptoon jne.

Atmosfääri erinevate kihtide füüsikalised omadused

Troposfääri füüsikalised omadused on tihedalt seotud selle lähedusega planeedi pinnale. Siit suunatakse infrapunakiirte kujul peegeldunud päikesesoojus tagasi ülespoole, kaasates juhtivuse ja konvektsiooni protsessid. Seetõttu langeb temperatuur maapinnast kaugenedes. Seda nähtust täheldatakse kuni stratosfääri kõrguseni (11-17 kilomeetrit), seejärel muutub temperatuur peaaegu muutumatuks kuni 34-35 km ja seejärel tõuseb temperatuur uuesti 50 kilomeetri kõrgusele (stratosfääri ülempiir) . Stratosfääri ja troposfääri vahel on õhuke tropopausi vahekiht (kuni 1-2 km), kus ekvaatori kohal täheldatakse püsivaid temperatuure - umbes miinus 70 ° C ja alla selle. Pooluste kohal “soojeneb” tropopaus suvel miinus 45°C-ni, talvel kõiguvad siin temperatuurid –65°C ümber.

Maa atmosfääri gaasiline koostis sisaldab sellist olulist elementi nagu osoon. Seda on pinnal suhteliselt vähe (kümme kuni miinus kuues aste ühe protsendi võrra), kuna gaas tekib päikesevalguse mõjul aatomihapnikust ülemised osadõhkkond. Eelkõige on kõige rohkem osooni umbes 25 km kõrgusel ja kogu "osooniekraan" asub poolustel 7–8 km, ekvaatoril 18 km ja kokku kuni 50 km kõrgusel poolustel. planeedi pind.

Atmosfäär kaitseb päikesekiirguse eest

Maa atmosfääri õhu koostisel on elu säilimisel väga oluline roll, kuna üksikud keemilised elemendid ja koostised piiravad edukalt päikesekiirguse ligipääsu maapinnale ning sellel elavatele inimestele, loomadele ja taimedele. Näiteks veeauru molekulid neelavad tõhusalt peaaegu kõiki infrapunakiirguse vahemikke, välja arvatud pikkused vahemikus 8–13 mikronit. Osoon neelab ultraviolettkiirgust kuni lainepikkuseni 3100 A. Ilma õhukese kihita (keskmiselt vaid 3 mm, kui see asetatakse planeedi pinnale), ainult vesi sügavamal kui 10 meetrit ja maa-alused koopad, kuhu päikesekiirgus ei mõju. haaret saab asustada..

Stratopausis null Celsiuse järgi

Atmosfääri kahe järgmise tasandi, stratosfääri ja mesosfääri vahel on tähelepanuväärne kiht – stratopaus. See vastab ligikaudu osooni maksimumide kõrgusele ja siinne temperatuur on inimesele suhteliselt mugav – umbes 0°C. Stratopausist kõrgemal mesosfääris (algab kuskil 50 km kõrgusel ja lõpeb 80-90 km kõrgusel) täheldatakse taas temperatuuri langust kauguse suurenedes Maa pinnast (miinus 70-80 ° C-ni). ). Meteorid põlevad tavaliselt mesosfääris täielikult ära.

Termosfääris - pluss 2000 K!

Maa atmosfääri keemiline koostis termosfääris (algab pärast mesopausi umbes 85-90 kuni 800 km kõrguselt) määrab sellise nähtuse võimaluse nagu väga haruldaste "õhu" kihtide järkjärguline kuumenemine päikesekiirguse mõjul. . Planeedi "õhuvaiba" selles osas on temperatuurid vahemikus 200–2000 K, mis saadakse hapniku ioniseerimise tõttu (üle 300 km on aatomi hapnik), samuti hapnikuaatomite rekombinatsioonist molekulideks. , millega kaasneb vabastamine suur kogus soojust. Termosfäär on koht, kus aurorad tekivad.

Termosfääri kohal asub eksosfäär – atmosfääri välimine kiht, millest kerged ja kiiresti liikuvad vesinikuaatomid pääsevad avakosmosesse. Maa atmosfääri keemilist koostist esindavad siin enamasti üksikud hapnikuaatomid alumistes kihtides, heeliumiaatomid keskmistes kihtides ja peaaegu eranditult vesinikuaatomid ülemistes kihtides. Siin valitsevad kõrged temperatuurid - umbes 3000 K ja atmosfäärirõhk puudub.

Kuidas tekkis maa atmosfäär?

Kuid nagu eespool mainitud, ei olnud planeedil alati sellist atmosfääri koostist. Kokku on selle elemendi päritolu kohta kolm kontseptsiooni. Esimene hüpotees viitab sellele, et atmosfäär võeti protoplanetaarsest pilvest akretsiooni käigus. Kuid tänapäeval saab seda teooriat oluliselt kritiseerida, kuna sellise esmase atmosfääri oleks pidanud hävitama meie tähe päikese "tuul". planeetide süsteem. Lisaks oletatakse, et maapealsete planeetide tekkevööndis ei õnnestunud lenduvaid elemente liiga kõrgete temperatuuride tõttu hoida.

Maa primaarse atmosfääri koostis, nagu eeldab teine ​​hüpotees, võis kujuneda tänu Päikesesüsteemi lähistelt saabunud asteroidide ja komeetide aktiivsele pommitamisele maapinnale arengu algstaadiumis. Seda kontseptsiooni on üsna raske kinnitada või ümber lükata.

Katse IDG RASis

Kõige tõenäolisem tundub olevat kolmas hüpotees, mis usub, et atmosfäär tekkis maakoore vahevööst gaaside vabanemise tulemusena umbes 4 miljardit aastat tagasi. Seda kontseptsiooni katsetati Venemaa Teaduste Akadeemia Geograafia Instituudis eksperimendi “Tsarev 2” käigus, mil vaakumis kuumutati meteoriitse päritoluga aine proovi. Seejärel registreeriti selliste gaaside eraldumine nagu H 2, CH 4, CO, H 2 O, N 2 jne. Seetõttu eeldasid teadlased õigesti, et Maa primaarse atmosfääri keemiline koostis sisaldab vett ja süsinikdioksiidi, vesinikfluoriidi ( HF), süsinikmonooksiid (CO), vesiniksulfiid (H 2 S), lämmastikuühendid, vesinik, metaan (CH 4), ammoniaagiaur (NH 3), argoon jne. Tekkimises osales primaarsest atmosfäärist pärit veeaur hüdrosfäärist oli süsihappegaas suuremal määral seotud orgaanilistes ainetes ja kivimites, lämmastik on muutunud osaks kaasaegne õhk, ja ka taas settekivimitesse ja orgaaniliseks aineks.

Maa primaarse atmosfääri koostis ei võimaldanud tänapäeva inimestel ilma hingamisaparaadita selles viibida, kuna siis puudus hapnik vajalikus koguses. Seda elementi ilmus märkimisväärsetes kogustes poolteist miljardit aastat tagasi, arvatavasti on see seotud meie planeedi vanimate elanike siniroheliste ja teiste vetikate fotosünteesi protsessiga.

Minimaalne hapnikusisaldus

Sellest, et Maa atmosfääri koostis oli algselt peaaegu hapnikuvaba, viitab asjaolu, et vanimates (Katarhea) kivimites leidub kergesti oksüdeeruvat, kuid mitte oksüdeeruvat grafiiti (süsinikku). Seejärel ilmusid nn ribastatud rauamaagid, mis sisaldasid rikastatud raudoksiidide kihte, mis tähendab võimsa molekulaarse hapnikuallika ilmumist planeedile. Kuid neid elemente leiti ainult perioodiliselt (võib-olla ilmusid samad vetikad või muud hapnikutootjad väikestele saartele hapnikuvabas kõrbes), samas kui ülejäänud maailm oli anaeroobne. Viimast toetab asjaolu, et kergesti oksüdeeruvat püriiti leiti vooluga töödeldud kivikeste kujul ilma jälgi keemilised reaktsioonid. Sest voolavad veed ei saa halvasti õhutada, on välja kujunenud seisukoht, et atmosfäär enne Kambriumi algust sisaldas alla ühe protsendi tänapäeva hapniku koostisest.

Revolutsiooniline muutus õhu koostises

Ligikaudu proterosoikumi keskel (1,8 miljardit aastat tagasi) toimus "hapnikurevolutsioon", kui maailm läks üle aeroobsele hingamisele, mille käigus saab ühest toitainemolekulist (glükoosist) saada 38, mitte aga kaks (nagu anaeroobne hingamine) energiaühikud. Maa atmosfääri koostis hakkas hapniku osas ületama ühe protsendi praegusest ja tekkima hakkas osoonikiht, mis kaitses organisme kiirguse eest. Just tema eest peitsid paksude kestade alla näiteks sellised iidsed loomad nagu trilobiidid. Sellest ajast kuni meie ajani suurenes peamise "hingamisteede" elemendi sisaldus järk-järgult ja aeglaselt, tagades planeedi eluvormide arengu mitmekesisuse.

ATmosfääri STRUKTUUR

Atmosfäär(vanakreeka keelest ἀτμός - aur ja σφαῖρα - pall) - planeeti Maa ümbritsev gaasikest (geosfäär). Selle sisepind katab hüdrosfääri ja osaliselt maakoore, välispind piirneb aga kosmose maalähedase osaga.

Füüsikalised omadused

Atmosfääri paksus on Maa pinnast ligikaudu 120 km kaugusel. Õhu kogumass atmosfääris on (5,1-5,3) 10 18 kg. Neist kuiva õhu mass on (5,1352 ± 0,0003) 10 18 kg, veeauru kogumass keskmiselt 1,27 10 16 kg.

Puhta kuiva õhu molaarmass on 28,966 g/mol ja õhu tihedus merepinnal on ligikaudu 1,2 kg/m3. Rõhk 0 °C merepinnal on 101,325 kPa; kriitiline temperatuur - -140,7 °C; kriitiline rõhk - 3,7 MPa; C p 0 °C juures – 1,0048·10 3 J/(kg·K), C v – 0,7159·10 3 J/(kg·K) (0 °C juures). Õhu lahustuvus vees (massi järgi) temperatuuril 0 °C - 0,0036%, temperatuuril 25 °C - 0,0023%.

"Normaaltingimustena" aktsepteeritakse Maa pinnal: tihedus 1,2 kg/m3, õhurõhk 101,35 kPa, temperatuur pluss 20 °C ja suhteline õhuniiskus 50%. Need tingimuslikud näitajad on puhtalt insenertehnilise tähtsusega.

Atmosfääri struktuur

Atmosfäär on kihilise struktuuriga. Atmosfääri kihid erinevad üksteisest õhutemperatuuri, selle tiheduse, õhus oleva veeauru hulga ja muude omaduste poolest.

Troposfäär(Vanakreeka τρόπος - "pööre", "muutus" ja σφαῖρα - "pall") - atmosfääri alumine, enim uuritud kiht, polaaraladel 8-10 km kõrge, parasvöötme laiuskraadidel kuni 10-12 km, ekvaatoril - 16-18 km.

Troposfääris tõustes langeb temperatuur keskmiselt 0,65 K iga 100 m järel ja ulatub ülemises osas 180-220 K-ni. Seda troposfääri ülemist kihti, milles temperatuuri langus kõrgusega peatub, nimetatakse tropopausiks. Atmosfääri järgmist kihti, mis asub troposfääri kohal, nimetatakse stratosfääriks.

Üle 80% atmosfääriõhu kogumassist on koondunud troposfääri, turbulents ja konvektsioon on kõrgelt arenenud, valdav osa veeauru on kontsentreeritud, tekivad pilved, tekivad atmosfäärifrondid, arenevad tsüklonid ja antitsüklonid ning muud protsessid. mis määravad ilma ja kliima. Troposfääris toimuvad protsessid on peamiselt põhjustatud konvektsioonist.

Seda troposfääri osa, mille piires on võimalik liustike teke maapinnale, nimetatakse chionosfääriks.

Tropopaus(kreeka keelest τροπος - pööre, muutus ja παῦσις - peatus, lõpetamine) - atmosfääri kiht, milles temperatuuri langus kõrgusega peatub; üleminekukiht troposfäärist stratosfääri. Maa atmosfääris paikneb tropopaus polaaraladel 8-12 km kõrgusel (merepinnast kõrgemal) ja ekvaatorist kuni 16-18 km kõrgusel. Tropopausi kõrgus sõltub ka aastaajast (suvel paikneb tropopaus kõrgemal kui talvel) ja tsüklonilisest aktiivsusest (tsüklonites on see madalam, antitsüklonites kõrgem)

Tropopausi paksus ulatub mitmesajast meetrist 2-3 kilomeetrini. Subtroopikas täheldatakse võimsate jugavoolude tõttu tropopausi katkestusi. Tropopaus teatud piirkondades sageli hävib ja moodustub uuesti.

Stratosfäär(ladina keelest stratum - põrandakate, kiht) - atmosfääri kiht, mis asub 11–50 km kõrgusel. Iseloomustab kerge temperatuurimuutus 11-25 km kihis (stratosfääri alumine kiht) ja temperatuuri tõus 25-40 km kihis –56,5 kuni 0,8 ° C (stratosfääri ülemine kiht või inversioonipiirkond) . Olles saavutanud umbes 40 km kõrgusel väärtuse umbes 273 K (peaaegu 0 °C), püsib temperatuur konstantsena kuni umbes 55 km kõrguseni. Seda püsiva temperatuuriga piirkonda nimetatakse stratopausiks ja see on stratosfääri ja mesosfääri vaheline piir. Õhutihedus stratosfääris on kümneid ja sadu kordi väiksem kui merepinnal.

Just stratosfääris asub osoonikiht ("osoonikiht") (15-20 kuni 55-60 km kõrgusel), mis määrab elu ülemise piiri biosfääris. Osoon (O 3) tekib fotokeemiliste reaktsioonide tulemusena kõige intensiivsemalt ~30 km kõrgusel. kogukaal O 3 moodustaks normaalrõhul 1,7-4,0 mm paksuse kihi, kuid sellest piisab Päikeselt elu hävitava ultraviolettkiirguse neelamiseks. O 3 hävib, kui see interakteerub vabade radikaalide, NO ja halogeeni sisaldavate ühenditega (sealhulgas "freoonidega").

Stratosfääris jääb suurem osa ultraviolettkiirguse lühilainelisest osast (180-200 nm) alles ja lühilainete energia muundub. Nende kiirte mõjul muutuvad magnetväljad, molekulid lagunevad, toimub ioniseerumine, tekib uus gaaside ja muude keemiliste ühendite moodustumine. Neid protsesse võib jälgida virmaliste, välkude ja muude helkide kujul.

Stratosfääris ja kõrgemates kihtides dissotsieeruvad päikesekiirguse mõjul gaasimolekulid aatomiteks (üle 80 km CO 2 ja H 2 dissotsieeruvad, üle 150 km - O 2, üle 300 km - N 2). 200-500 km kõrgusel toimub gaaside ionisatsioon ka ionosfääris, 320 km kõrgusel on laetud osakeste (O + 2, O − 2, N + 2) kontsentratsioon ~ 1/300 neutraalsete osakeste kontsentratsioon. Atmosfääri ülemistes kihtides on vabad radikaalid - OH, HO 2 jne.

Stratosfääris veeauru peaaegu pole.

Lennud stratosfääri algasid 1930. aastatel. Lend esimesel stratosfääri õhupallil (FNRS-1), mille sooritasid Auguste Picard ja Paul Kipfer 27. mail 1931 16,2 km kõrgusele, on laialt tuntud. Kaasaegsed lahingu- ja ülehelikiirusega kommertslennukid lendavad stratosfääris tavaliselt kuni 20 km kõrgusel (kuigi dünaamiline lagi võib olla palju kõrgem). Kõrgmäestiku ilmapallid tõusevad kuni 40 km kõrgusele; mehitamata õhupalli rekord on 51,8 km.

Viimasel ajal on USA sõjaväeringkondades palju tähelepanu pööratud stratosfääri üle 20 km kõrguste kihtide arengule, mida sageli nimetatakse "eelkosmoseks". « kosmose lähedal» ). Eeldatakse, et mehitamata õhulaevad ja päikeseenergial töötavad õhusõidukid (nagu NASA Pathfinder) suudavad püsida umbes 30 km kõrgusel pikka aega ning pakkuda valvet ja sidet väga suurtele aladele, jäädes samal ajal õhutõrjele vähe haavatavaks. süsteemid; Sellised seadmed on mitu korda odavamad kui satelliidid.

Stratopaus- atmosfäärikiht, mis on piiriks kahe kihi, stratosfääri ja mesosfääri vahel. Stratosfääris tõuseb temperatuur kõrguse kasvades ja stratopaus on kiht, kus temperatuur saavutab maksimumi. Stratopausi temperatuur on umbes 0 °C.

Seda nähtust ei täheldata mitte ainult Maal, vaid ka teistel planeetidel, millel on atmosfäär.

Maal paikneb stratopaus 50–55 km kõrgusel merepinnast. Atmosfäärirõhk on umbes 1/1000 merepinna tasemest.

Mesosfäär(kreeka keelest μεσο- - "keskmine" ja σφαῖρα - "pall", "kera") - atmosfäärikiht kõrgusel 40-50 kuni 80-90 km. Iseloomustab temperatuuri tõus koos kõrgusega; maksimaalne (umbes +50°C) temperatuur asub ca 60 km kõrgusel, misjärel hakkab temperatuur langema –70° või –80°C-ni. Seda temperatuuri langust seostatakse päikesekiirguse (kiirguse) jõulise neeldumisega osooni poolt. Geograafilise ja geofüüsikaline liit võttis termini kasutusele 1951. aastal.

Mesosfääri, nagu ka selle all olevate atmosfäärikihtide gaasi koostis on konstantne ja sisaldab umbes 80% lämmastikku ja 20% hapnikku.

Mesosfääri eraldab selle all olevast stratosfäärist stratopaus ja selle peal olevast termosfäärist mesopaus. Mesopaus langeb põhimõtteliselt kokku turbopausiga.

Meteorid hakkavad hõõguma ja reeglina põlevad mesosfääris täielikult ära.

Mesosfääris võivad ilmuda noktilised pilved.

Lendude jaoks on mesosfäär omamoodi "surnud tsoon" - siinne õhk on lennukite või õhupallide toetamiseks liiga haruldane (50 km kõrgusel on õhu tihedus 1000 korda väiksem kui merepinnal) ja samal ajal liiga tihe tehislendude satelliitide jaoks nii madalal orbiidil. Mesosfääri otsesed uuringud viiakse läbi peamiselt suborbitaalsete ilmarakettide abil; Üldiselt on mesosfääri vähem hästi uuritud kui teisi atmosfääri kihte, mistõttu teadlased on nimetanud seda "ignorosfääriks".

Mesopaus

Mesopaus- atmosfäärikiht, mis eraldab mesosfääri ja termosfääri. Maal asub see 80-90 km kõrgusel merepinnast. Mesopausi ajal on temperatuuri miinimum, mis on umbes –100 °C. Allpool (alates ca 50 km kõrguselt) temperatuur kõrgusega langeb, kõrgemale (kuni ca 400 km kõrguseni) tõuseb taas. Mesopaus langeb kokku Päikesest tuleva röntgenikiirguse ja lühilainelise ultraviolettkiirguse aktiivse neeldumise piirkonna alumise piiriga. Sellel kõrgusel täheldatakse ööpilvi.

Mesopaus ei toimu mitte ainult Maal, vaid ka teistel planeetidel, millel on atmosfäär.

Karmani liin- kõrgus merepinnast, mida tavapäraselt peetakse Maa atmosfääri ja kosmose vaheliseks piiriks.

Vastavalt Fédération Aéronautique Internationale (FAI) määratlusele asub Karmani liin 100 km kõrgusel merepinnast.

Kõrgus sai nime ungari päritolu Ameerika teadlase Theodore von Karmani järgi. Ta tegi esimesena kindlaks, et ligikaudu sellel kõrgusel muutub atmosfäär nii haruldaseks, et aeronautika muutub võimatuks, kuna piisava tõstejõu tekitamiseks vajalik õhusõiduki kiirus on suurem kui esimene kosmiline kiirus ja seetõttu on kõrgemate kõrguste saavutamiseks vajalik astronautika kasutamiseks.

Maa atmosfäär jätkub väljaspool Karmani joont. Maa atmosfääri välimine osa, eksosfäär, ulatub 10 tuhande km kõrgusele või rohkemgi, sellel kõrgusel koosneb atmosfäär peamiselt vesinikuaatomitest, mis on võimelised atmosfäärist lahkuma.

Karman Line'i saavutamine oli Ansari X auhinna saamise esimene tingimus, sest see on lennu kosmoselennuks tunnistamise aluseks.

Atmosfäär (kreeka keelest ατμός - "aur" ja σφαῖρα - "kera") on taevakeha gaasikest, mida hoiab enda ümber gravitatsioon. Atmosfäär on planeedi gaasiline kest, mis koosneb erinevate gaaside, veeauru ja tolmu segust. Atmosfäär vahetab ainet Maa ja Kosmose vahel. Maa võtab vastu kosmilist tolmu ja meteoriidimaterjali ning kaotab kõige kergemad gaasid: vesiniku ja heeliumi. Maa atmosfääri tungib läbi ja lõhki Päikeselt tulev võimas kiirgus, mis määrab planeedi pinna soojusrežiimi, põhjustades atmosfäärigaaside molekulide dissotsiatsiooni ja aatomite ioniseerumist.

Maa atmosfäär sisaldab hapnikku, mida enamik elusorganisme kasutab hingamiseks, ning süsihappegaasi, mida fotosünteesi käigus tarbivad taimed, vetikad ja sinivetikad. Atmosfäär on ühtlasi planeedi kaitsekiht, mis kaitseb selle elanikke päikese ultraviolettkiirguse eest.

Kõigil massiivsetel kehadel – maapealsetel planeetidel ja gaasihiiglastel – on atmosfäär.

Atmosfääri koostis

Atmosfäär on gaaside segu, mis koosneb lämmastikust (78,08%), hapnikust (20,95%), süsinikdioksiidist (0,03%), argoonist (0,93%), vähesel määral heeliumist, neoonist, ksenoonist, krüptoonist (0,01%), 0,038% süsinikdioksiidi ja väikeses koguses vesinikku, heeliumi, muid väärisgaase ja saasteaineid.

Maa õhu kaasaegne koostis pandi paika enam kui sada miljonit aastat tagasi, kuid järsult suurenenud inimtootmisaktiivsus viis sellegipoolest selle muutumiseni. Praegu on CO 2 sisalduse tõus ligikaudu 10-12%.Atmosfääris sisalduvad gaasid täidavad erinevaid funktsionaalseid rolle. Nende gaaside põhilise tähtsuse määrab aga eelkõige asjaolu, et nad neelavad väga tugevalt kiirgusenergiat ja avaldavad seeläbi olulist mõju temperatuuri režiim Maa pind ja atmosfäär.

Planeedi atmosfääri esialgne koostis sõltub tavaliselt päikese keemilistest ja temperatuuriomadustest planeedi moodustumise ajal ning sellele järgnevast välisgaaside vabanemisest. Seejärel areneb gaasikesta koostis erinevate tegurite mõjul.

Veenuse ja Marsi atmosfäär koosneb peamiselt süsinikdioksiidist, millele on lisatud vähesel määral lämmastikku, argooni, hapnikku ja muid gaase. Maa atmosfäär on suuresti selles elavate organismide toode. Madala temperatuuriga gaasihiiglased – Jupiter, Saturn, Uraan ja Neptuun – suudavad säilitada peamiselt madala molekulmassiga gaase – vesinikku ja heeliumi. Kõrge temperatuuriga gaasihiiglased, nagu Osiris või 51 Pegasi b, vastupidi, ei suuda seda hoida ja nende atmosfääri molekulid on ruumis laiali. See protsess toimub aeglaselt ja pidevalt.

lämmastik, Kõige levinum gaas atmosfääris on keemiliselt passiivne.

Hapnik, erinevalt lämmastikust, on keemiliselt väga aktiivne element. Hapniku spetsiifiline funktsioon on heterotroofsete organismide, kivimite ja vulkaanide poolt atmosfääri paisatavate alaoksüdeeritud gaaside orgaanilise aine oksüdeerimine. Ilma hapnikuta ei toimuks surnud orgaanilise aine lagunemist.

Atmosfääri struktuur

Atmosfääri struktuur koosneb kahest osast: sisemine - troposfäär, stratosfäär, mesosfäär ja termosfäär ehk ionosfäär ning välimine - magnetosfäär (eksosfäär).

1) Troposfäär- see on atmosfääri alumine osa, kuhu on koondunud 3/4, st. ~ 80% kogu maakera atmosfäärist. Selle kõrguse määrab maapinna ja ookeani kuumenemisest tingitud vertikaalsete (tõusvate või laskuvate) õhuvoolude intensiivsus, seetõttu on troposfääri paksus ekvaatoril 16–18 km, parasvöötme laiuskraadidel 10–11 km ning poolustel – kuni 8 km. Õhutemperatuur troposfääris kõrgusel langeb 0,6ºС iga 100 m kohta ja jääb vahemikku +40 kuni -50ºС.

2) Stratosfäär asub troposfääri kohal ja on kuni 50 km kõrgusel planeedi pinnast. Temperatuur kuni 30 km kõrgusel on konstantne -50ºС. Siis hakkab see tõusma ja ulatub 50 km kõrgusel +10ºС.

Biosfääri ülemine piir on osooniekraan.

Osooniekraan on stratosfääris paiknev atmosfäärikiht, mis asub Maa pinnast erinevatel kõrgustel ja mille maksimaalne osoonitihedus on 20–26 km kõrgusel.

Osoonikihi kõrgus poolustel on hinnanguliselt 7-8 km, ekvaatoril 17-18 km ja osooni maksimaalne esinemiskõrgus on 45-50 km. Elu osoonikilbi kohal on Päikese karmi ultraviolettkiirguse tõttu võimatu. Kui surute kõik osoonimolekulid kokku, saate planeedi ümber ~ 3 mm kihi.

3) Mesosfäär– selle kihi ülemine piir asub kuni 80 km kõrgusel. Selle peamine omadus on temperatuuri järsk langus -90ºС ülemise piiri juures. Siin registreeritakse jääkristallidest koosnevad noktiilsed pilved.

4) ionosfäär (termosfäär) - asub kuni 800 km kõrgusel ja seda iseloomustab oluline temperatuuri tõus:

150 km temperatuur +240ºС,

200 km temperatuur +500ºС,

600 km temperatuur +1500ºС.

Päikese ultraviolettkiirguse mõjul on gaasid ioniseeritud olekus. Ionisatsiooni seostatakse gaaside sära ja aurorade ilmumisega.

Ionosfääril on võime raadiolaineid korduvalt peegeldada, mis tagab kaugraadioside planeedil.

5) Eksosfäär– asub üle 800 km ja ulatub kuni 3000 km kaugusele. Siin on temperatuur >2000ºС. Gaasi liikumise kiirus läheneb kriitilisele ~ 11,2 km/sek. Domineerivad aatomid on vesinik ja heelium, mis moodustavad Maa ümber helendava krooni, mis ulatub 20 000 km kõrgusele.

Atmosfääri funktsioonid

1) Termoregulatsioon – ilm ja kliima Maal sõltuvad soojuse ja rõhu jaotusest.

2) Elu säilitav.

3) Troposfääris toimuvad globaalsed vertikaalsed ja horisontaalsed liikumised õhumassid veeringe ja soojusvahetuse määramine.

4) Peaaegu kõik maapinna geoloogilised protsessid on põhjustatud atmosfääri, litosfääri ja hüdrosfääri koosmõjust.

5) Kaitsev – atmosfäär kaitseb maad kosmose, päikesekiirguse ja meteoriiditolmu eest.

Atmosfääri funktsioonid. Ilma atmosfäärita oleks elu Maal võimatu. Inimene tarbib päevas 12-15 kg. õhku, hingates iga minuti järel 5–100 liitrit, mis ületab oluliselt keskmist ööpäevast toidu- ja veevajadust. Lisaks kaitseb atmosfäär usaldusväärselt inimesi ohtude eest, mis neid kosmosest ähvardavad: ei lase läbi meteoriite ega kosmilist kiirgust. Inimene võib elada ilma toiduta viis nädalat, ilma veeta viis päeva, ilma õhuta viis minutit. Tavaline inimelu nõuab mitte ainult õhku, vaid ka selle teatud puhtust. Õhukvaliteedist sõltub inimeste tervis, taimestiku ja loomastiku seisund, ehituskonstruktsioonide ja -tarindite tugevus ja vastupidavus. Saastunud õhk kahjustab vett, maad, merd ja pinnast. Atmosfäär määrab valguse ja reguleerib maa soojusrežiime, aitab kaasa soojuse ümberjaotumisele maakeral. Gaasikesta kaitseb Maad liigse jahtumise ja kuumenemise eest. Kui meie planeeti ei ümbritseks õhukest, siis ühe päeva jooksul ulatuks temperatuurikõikumiste amplituud 200 C-ni. Atmosfäär päästab kõike Maal elavat hävitava ultraviolett-, röntgeni- ja kiirguse eest. kosmilised kiired. Atmosfäär mängib valguse levimisel suurt rolli. Selle õhk purustab päikesekiired miljoniks väikeseks kiireks, hajutab need ja loob ühtlase valgustuse. Atmosfäär toimib helide juhina.

ATMOSFÄÄR
taevakeha ümbritsev gaasiline ümbris. Selle omadused sõltuvad suurusest, kaalust, temperatuurist, pöörlemiskiirusest ja keemiline koostis antud taevakehast ja need on määratud ka selle kujunemise ajalooga alates selle tekkimise hetkest. Maa atmosfäär koosneb gaaside segust, mida nimetatakse õhuks. Selle põhikomponendid on lämmastik ja hapnik vahekorras ligikaudu 4:1. Inimest mõjutab peamiselt atmosfääri alumine 15–25 km seisund, kuna just sellesse alumisse kihti koondub suurem osa õhust. Teadust, mis uurib atmosfääri, nimetatakse meteoroloogiaks, kuigi selle teaduse teemaks on ka ilm ja selle mõju inimesele. Muutub ka atmosfääri ülemiste kihtide seisund, mis asuvad 60–300 ja isegi 1000 km kõrgusel Maa pinnast. Siin arenevad tugevad tuuled, tormid ja tekivad hämmastavad elektrinähtused nagu aurorad. Paljud loetletud nähtused on seotud päikesekiirguse, kosmilise kiirguse ja Maa magnetvälja vooluga. Atmosfääri kõrged kihid on ka keemialabor, kuna seal sisenevad vaakumilähedastes tingimustes mõned atmosfääri gaasid võimsa päikeseenergia voolu mõjul keemilistesse reaktsioonidesse. Teadust, mis uurib neid omavahel seotud nähtusi ja protsesse, nimetatakse kõrgatmosfäärifüüsikaks.
MAA ATmosfääri ÜLDISED OMADUSED
Mõõtmed. Kuni raketid ja tehissatelliidid uurisid atmosfääri välimisi kihte Maa raadiusest mitu korda suuremate vahemaade tagant, usuti, et maapinnast eemaldudes muutub atmosfäär järk-järgult haruldasemaks ja läheb sujuvalt planeetidevahelisse ruumi. . Nüüdseks on kindlaks tehtud, et Päikese sügavatest kihtidest lähtuvad energiavood tungivad avakosmosesse kaugele Maa orbiidist kaugemale, kuni Päikesesüsteemi välispiirideni. See nn Päikesetuul liigub ümber Maa magnetvälja, moodustades pikliku "õõnsuse", mille sisse on koondunud Maa atmosfäär. Maa magnetväli on Päikese poole suunatud päeval märgatavalt kitsenenud ja moodustab pika keele, mis ulatub ilmselt Kuu orbiidist väljapoole, vastupidisel, öisel küljel. Maa magnetvälja piiri nimetatakse magnetopausiks. Päevasel poolel kulgeb see piir maapinnast umbes seitsme Maa raadiuse kaugusel, kuid päikese aktiivsuse suurenemise perioodidel osutub see Maa pinnale veelgi lähemale. Magnetopaus on ühtlasi ka Maa atmosfääri piiriks, mille väliskest nimetatakse ka magnetosfääriks, kuna sinna on koondunud laetud osakesed (ioonid), mille liikumise määrab Maa magnetväli. Atmosfäärigaaside kogumass on ligikaudu 4,5 * 1015 tonni, seega on atmosfääri “kaal” pindalaühiku kohta ehk atmosfäärirõhk merepinnal ligikaudu 11 tonni/m2.
Mõte eluks. Eeltoodust järeldub, et Maa on planeetidevahelisest ruumist eraldatud võimsa kaitsekihiga. Kosmost imbub võimas ultraviolett- ja röntgenkiirgus Päikeselt ning veelgi tugevam kosmiline kiirgus ning seda tüüpi kiirgus on hävitav kõigile elusolenditele. Atmosfääri välisservas on kiirguse intensiivsus surmav, kuid suure osa sellest hoiab atmosfäär Maa pinnast kaugel. Selle kiirguse neeldumine seletab paljusid atmosfääri kõrgete kihtide omadusi ja eriti seal toimuvaid elektrinähtusi. Atmosfääri madalaim, maapinnal asuv kiht on eriti oluline inimestele, kes elavad Maa tahke, vedela ja gaasilise kesta kokkupuutepunktis. "Tahke" Maa ülemist kesta nimetatakse litosfääriks. Umbes 72% Maa pinnast on kaetud ookeanivetega, mis moodustavad suurema osa hüdrosfäärist. Atmosfäär piirneb nii litosfääri kui ka hüdrosfääriga. Inimene elab õhuookeani põhjas ja veeookeani taseme lähedal või sellest kõrgemal. Nende ookeanide koosmõju on üks olulisi atmosfääri seisundit määravaid tegureid.
Ühend. Atmosfääri alumised kihid koosnevad gaaside segust (vt tabelit). Lisaks tabelis loetletutele on õhus väikeste lisanditena ka teisi gaase: osoon, metaan, ained nagu süsinikmonooksiid (CO), lämmastik- ja vääveloksiidid, ammoniaak.

ATmosfääri KOOSTIS


Atmosfääri kõrgetes kihtides muutub Päikeselt tuleva kõva kiirguse mõjul õhu koostis, mis viib hapnikumolekulide lagunemiseni aatomiteks. Aatomi hapnik on atmosfääri kõrgete kihtide põhikomponent. Lõpuks, Maa pinnast kõige kaugemal asuvates atmosfääri kihtides on põhikomponentideks kõige kergemad gaasid – vesinik ja heelium. Kuna põhiosa ainest on koondunud alumisse 30 km, ei avalda õhu koostise muutused kõrgusel üle 100 km märgatavat mõju atmosfääri üldisele koostisele.
Energiavahetus. Päike on peamine Maale tarnitav energiaallikas. Kauguses ca. 150 miljoni km kaugusel Päikesest saab Maa ligikaudu kahe miljardindiku oma kiiratavast energiast, peamiselt spektri nähtavas osas, mida inimesed nimetavad valguseks. Suurema osa sellest energiast neelavad atmosfäär ja litosfäär. Ka Maa kiirgab energiat, peamiselt pikalainelise infrapunakiirguse kujul. Nii luuakse tasakaal Päikeselt saadava energia, Maa ja atmosfääri kuumenemise ning kosmosesse paisatava soojusenergia vastupidise voolu vahel. Selle tasakaalu mehhanism on äärmiselt keeruline. Tolmu- ja gaasimolekulid hajutavad valgust, peegeldades seda osaliselt kosmosesse. Veelgi suurem osa sissetulevast kiirgusest peegeldub pilvedelt. Osa energiast neelavad otse gaasimolekulid, peamiselt aga kivimid, taimestik ja pinnaveed. Atmosfääris leiduv veeaur ja süsinikdioksiid edastavad nähtavat kiirgust, kuid neelavad infrapunakiirgust. Soojusenergia koguneb peamiselt atmosfääri alumistesse kihtidesse. Sarnane efekt ilmneb kasvuhoones, kui klaas laseb valgust sisse ja pinnas kuumeneb. Kuna klaas on infrapunakiirgusele suhteliselt läbipaistmatu, koguneb kasvuhoonesse soojus. Veeauru ja süsihappegaasi olemasolust tingitud madalama atmosfääri kuumenemist nimetatakse sageli kasvuhooneefektiks. Pilvisus mängib olulist rolli soojuse säilitamisel atmosfääri alumistes kihtides. Kui pilved selginevad või õhk muutub läbipaistvamaks, langeb temperatuur paratamatult, kuna Maa pind kiirgab soojusenergiat vabalt ümbritsevasse ruumi. Maa pinnal olev vesi neelab päikeseenergiat ja aurustub, muutudes gaasiks – veeauruks, mis kannab tohutul hulgal energiat atmosfääri alumistesse kihtidesse. Kui veeaur kondenseerub ja tekivad pilved või udu, vabaneb see energia soojusena. Umbes pool maapinnale jõudvast päikeseenergiast kulub vee aurustamisele ja siseneb atmosfääri alumistesse kihtidesse. Seega kasvuhooneefekti ja vee aurustumise tõttu soojeneb atmosfäär altpoolt. See seletab osaliselt selle tsirkulatsiooni kõrget aktiivsust võrreldes Maailma ookeani tsirkulatsiooniga, mida soojendatakse ainult ülalt ja mis on seetõttu palju stabiilsem kui atmosfäär.
Vaata ka METEOROLOOGIA JA KLIMATOLOOGIA. Lisaks atmosfääri üldisele kuumenemisele päikesevalguse toimel kuumenevad mõned selle kihid oluliselt päikese ultraviolett- ja röntgenikiirguse tõttu. Struktuur. Võrreldes vedelike ja tahkete ainetega, in gaasilised ained molekulide vaheline tõmbejõud on minimaalne. Molekulidevahelise kauguse suurenedes on gaasid võimelised lõpmatuseni paisuma, kui miski neid ei takista. Atmosfääri alumine piir on Maa pind. Rangelt võttes on see barjäär läbimatu, kuna gaasivahetus toimub õhu ja vee ning isegi õhu ja kivimite vahel, kuid sel juhul võib need tegurid tähelepanuta jätta. Kuna atmosfäär on sfääriline kest, pole sellel külgmisi piire, vaid ainult alumine piir ja ülemine (välimine) piir, mis on avatud planeetidevahelise ruumi küljelt. Osa neutraalseid gaase lekib läbi välispiiri, samuti siseneb ainet ümbritsevast kosmosest. Enamik laetud osakesi, välja arvatud suure energiaga kosmilised kiired, kas püütakse kinni magnetosfääri poolt või tõrjutakse selle poolt. Atmosfääri mõjutab ka gravitatsioonijõud, mis hoiab õhukest Maa pinnal. Atmosfäärigaasid surutakse kokku nende enda raskuse all. See kokkusurumine on maksimaalne atmosfääri alumisel piiril, seetõttu on õhutihedus siin suurim. Igal kõrgusel maapinnast sõltub õhu kokkusurumise aste peal oleva õhusamba massist, seetõttu väheneb kõrgusega õhu tihedus. Rõhk, mis on võrdne peal oleva õhusamba massiga pindalaühiku kohta, sõltub otseselt tihedusest ja seetõttu väheneb ka kõrgusega. Kui atmosfäär oleks "ideaalne gaas", millel on konstantne kõrgusest sõltumatu koostis, konstantne temperatuur ja sellele mõjuv konstantne raskusjõud, siis väheneks rõhk 10 korda iga 20 km kõrguse kohta. Tegelik atmosfäär erineb ideaalsest gaasist veidi kuni umbes 100 km kõrguseni ja seejärel langeb rõhk kõrgusega aeglasemalt, kui õhu koostis muutub. Väikesed muudatused kirjeldatud mudelisse toob kaasa ka gravitatsioonijõu vähenemine kaugusega Maa keskpunktist, mis on u. 3% iga 100 km kõrguse kohta. Erinevalt atmosfäärirõhust ei lange temperatuur pidevalt kõrgusega. Nagu on näidatud joonisel fig. 1, väheneb see ligikaudu 10 km kõrguseks ja hakkab seejärel uuesti kasvama. See juhtub siis, kui hapnik neeldub ultraviolettkiirgust. Nii tekib osoongaas, mille molekulid koosnevad kolmest hapnikuaatomist (O3). Samuti neelab see ultraviolettkiirgust ja nii see atmosfäärikiht, mida nimetatakse osonosfääriks, soojeneb. Kõrgemal temperatuur jälle langeb, kuna seal on palju vähem gaasimolekule ja vastavalt väheneb ka energia neeldumine. Veelgi kõrgemates kihtides tõuseb temperatuur taas Päikesest lähtuva lühima lainepikkusega ultraviolett- ja röntgenikiirguse atmosfääri neeldumise tõttu. Selle võimsa kiirguse mõjul toimub atmosfääri ioniseerumine, s.t. gaasimolekul kaotab elektroni ja omandab positiivse elektrilaengu. Sellised molekulid muutuvad positiivselt laetud ioonideks. Vabade elektronide ja ioonide olemasolu tõttu omandab see atmosfäärikiht elektrijuhi omadused. Arvatakse, et temperatuur jätkab tõusmist kõrgustesse, kus õhuke atmosfäär läheb planeetidevahelisse ruumi. Maapinnast mitme tuhande kilomeetri kaugusel valitseb tõenäoliselt temperatuur vahemikus 5000–10 000 ° C. Kuigi molekulide ja aatomite liikumiskiirus on väga suur ja seetõttu ka kõrge temperatuur, ei ole see haruldane gaas “kuum” tavalises mõttes. Suurel kõrgusel asuvate molekulide väikese arvu tõttu on nende kogusoojusenergia väga väike. Seega koosneb atmosfäär eraldiseisvatest kihtidest (s.o kontsentriliste kestade ehk sfääride jadast), mille eraldamine sõltub sellest, milline omadus pakub suurimat huvi. Keskmise temperatuurijaotuse põhjal on meteoroloogid välja töötanud ideaalse “keskmise atmosfääri” struktuuri diagrammi (vt joonis 1).

Troposfäär on atmosfääri alumine kiht, mis ulatub esimese termilise miinimumini (nn tropopaus). Troposfääri ülempiir sõltub geograafilisest laiuskraadist (troopikas - 18-20 km, parasvöötmes - umbes 10 km) ja aastaajast. USA riiklik ilmateenistus viis lõunapooluse lähedal läbi sondeerimise ja paljastas tropopausi kõrguse hooajalised muutused. Märtsis on tropopaus ca. 7,5 km. Märtsist augustini või septembrini toimub troposfääri pidev jahenemine ja selle piir tõuseb lühikeseks ajaks augustis või septembris umbes 11,5 km kõrgusele. Seejärel väheneb see septembrist detsembrini kiiresti ja saavutab madalaima positsiooni - 7,5 km, kus see püsib märtsini, kõikudes vaid 0,5 km piires. Just troposfääris kujuneb peamiselt ilm, mis määrab inimese eksisteerimise tingimused. Suurem osa atmosfääri veeaurust on koondunud troposfääri ja siin tekivadki peamiselt pilved, kuigi osa jääkristallidest koosnevaid pilvi leidub ka kõrgemates kihtides. Troposfääri iseloomustab turbulents ja võimsad õhuvoolud (tuuled) ja tormid. Troposfääri ülaosas on tugevad õhuvoolud rangelt määratletud suunas. Väikeste keeristega sarnased turbulentsed keerised tekivad hõõrdumise ja dünaamilise vastasmõju mõjul aeglaselt ja kiiresti liikuvate õhumasside vahel. Kuna nendel kõrgetel tasemetel pole tavaliselt pilvkatet, nimetatakse seda turbulentsi "puhta õhu turbulentsiks".
Stratosfäär. Atmosfääri ülemist kihti kirjeldatakse sageli ekslikult kui suhteliselt püsiva temperatuuriga kihti, kus tuuled puhuvad enam-vähem ühtlaselt ja kus meteoroloogilised elemendid muutuvad vähe. Stratosfääri ülemised kihid soojenevad, kui hapnik ja osoon neelavad päikese ultraviolettkiirgust. Stratosfääri ülemine piir (stratopaus) on koht, kus temperatuur veidi tõuseb, saavutades vahepealse maksimumi, mis on sageli võrreldav õhu pinnakihi temperatuuriga. Konstantsel kõrgusel lendamiseks mõeldud lennukite ja õhupallide abil tehtud vaatluste põhjal on stratosfääris tuvastatud turbulentsed häired ja tugevad eri suundades puhuvad tuuled. Nagu troposfääris, on ka siin võimsad õhupöörised, mis on eriti ohtlikud kiirlennukitele. Tugevad tuuled, mida nimetatakse jugavooludeks, puhuvad kitsastes tsoonides mööda parasvöötme laiuskraadide pooluse piire. Need tsoonid võivad aga nihkuda, kaduda ja uuesti ilmuda. Jugavoolud tungivad tavaliselt läbi tropopausi ja ilmuvad troposfääri ülaossa, kuid nende kiirus väheneb kõrguse vähenedes kiiresti. Võimalik, et osa stratosfääri sisenevast energiast (peamiselt osooni tekkeks kuluv) mõjutab protsesse troposfääris. Eriti aktiivne segunemine on seotud atmosfäärifrontidega, kus ulatuslikud stratosfääri õhuvoolud registreeriti tunduvalt allpool tropopausi ja troposfääriõhk tõmbas stratosfääri alumistesse kihtidesse. Märkimisväärset edu on saavutatud atmosfääri alumiste kihtide vertikaalse struktuuri uurimisel tänu raadiosondide 25-30 km kõrgusele lennutamise tehnoloogia täiustamisele. Stratosfääri kohal asuv mesosfäär on kest, milles kuni 80–85 km kõrguseni langeb temperatuur atmosfääri kui terviku miinimumväärtusteni. Rekordiliselt madalad temperatuurid kuni -110 °C registreeriti ilmarakettidega, mis lasti välja USA-Kanada rajatisest Fort Churchillis (Kanada). Mesosfääri ülemine piir (mesopaus) langeb ligikaudu kokku Päikese röntgen- ja lühilainelise ultraviolettkiirguse aktiivse neeldumise piirkonna alumise piiriga, millega kaasneb gaasi kuumutamine ja ioniseerimine. Polaaraladel tekivad suvise mesopausi ajal sageli pilvesüsteemid, mis hõivavad suure ala, kuid on vähese vertikaalse arenguga. Sellised öösel helendavad pilved paljastavad sageli ulatuslikke lainelaadseid õhu liikumisi mesosfääris. Nende pilvede koostist, niiskuse ja kondensatsioonituumade allikaid, dünaamikat ja seoseid meteoroloogiliste teguritega pole veel piisavalt uuritud. Termosfäär on atmosfäärikiht, milles temperatuur pidevalt tõuseb. Selle võimsus võib ulatuda 600 km-ni. Gaasi rõhk ja seega ka tihedus vähenevad pidevalt kõrgusega. Maapinna lähedal sisaldab 1 m3 õhku u. 2,5 x 1025 molekuli kõrgusel ca. 100 km, termosfääri alumistes kihtides - ligikaudu 1019, 200 km kõrgusel, ionosfääris - 5 * 10 15 ja arvutuste kohaselt ca kõrgusel. 850 km - umbes 1012 molekuli. Planeetidevahelises ruumis on molekulide kontsentratsioon 10 8-10 9 1 m3 kohta. Kõrgusel ca. 100 km kaugusel on molekulide arv väike ja nad põrkuvad üksteisega harva. Keskmist vahemaad, mille kaootiliselt liikuv molekul läbib enne teise sarnase molekuliga kokkupõrget, nimetatakse selle keskmiseks vabaks teeks. Kiht, milles see väärtus suureneb nii palju, et molekulidevaheliste või aatomitevaheliste kokkupõrgete tõenäosust saab tähelepanuta jätta, asub termosfääri ja pealiskihi (eksosfääri) vahelisel piiril ning seda nimetatakse termopausiks. Termopaus asub maapinnast ligikaudu 650 km kaugusel. Teatud temperatuuril sõltub molekuli kiirus selle massist: kergemad molekulid liiguvad kiiremini kui raskemad. Madalamates atmosfäärikihtides, kus vaba tee on väga lühike, ei ole märgata gaaside eraldumist nende molekulmassi järgi, kuid see väljendub üle 100 km. Lisaks lagunevad hapnikumolekulid Päikese ultraviolett- ja röntgenkiirguse mõjul aatomiteks, mille mass on pool molekuli massist. Seetõttu muutub Maa pinnalt eemaldudes atmosfääri koostises ja ca kõrgusel aatomihapnik üha olulisemaks. 200 km saab selle põhikomponendiks. Kõrgemal, umbes 1200 km kaugusel Maa pinnast, domineerivad kerged gaasid – heelium ja vesinik. Atmosfääri väliskest koosneb neist. See massi järgi eraldamine, mida nimetatakse difuusseks kihistamiseks, sarnaneb segude eraldamisega tsentrifuugi abil. Eksosfäär on atmosfääri välimine kiht, mis tekib temperatuurimuutuste ja neutraalse gaasi omaduste põhjal. Eksosfääris olevad molekulid ja aatomid pöörlevad gravitatsiooni mõjul ballistilistel orbiitidel ümber Maa. Mõned neist orbiitidest on paraboolsed ja meenutavad mürskude trajektoore. Molekulid võivad pöörlema ​​ümber Maa ja elliptilistel orbiitidel, nagu satelliidid. Mõned molekulid, peamiselt vesinik ja heelium, on avatud trajektooridega ja lähevad avakosmosesse (joonis 2).



PÄIKESE-MAA ÜHENDUSED JA NENDE MÕJU ATmosfäärile
Atmosfääri looded. Päikese ja Kuu külgetõmme põhjustab atmosfääris loodeid, mis on sarnased maa ja mere loodetega. Kuid atmosfääri loodetel on märkimisväärne erinevus: atmosfäär reageerib kõige tugevamalt Päikese külgetõmbejõule, samas kui Maakoor ja ookean - Kuu külgetõmbe all. Seda seletatakse asjaoluga, et atmosfääri soojendab Päike ja lisaks gravitatsioonilisele tekib võimas termiline mõõn. Üldiselt tekivad atmosfääri- ja mere looded on sarnased, välja arvatud see, et õhu reaktsiooni ennustamiseks gravitatsioonilistele ja termilistele mõjudele on vaja arvestada selle kokkusurutavust ja temperatuurijaotust. Pole täiesti selge, miks poolööpäevased (12-tunnised) päikeselooded atmosfääris valitsevad igapäevaste päikese- ja poolpäevaste loodete üle, kuigi kahe viimase protsessi liikumapanevad jõud on palju võimsamad. Varem arvati, et atmosfääris tekib resonants, mis võimendab võnkumisi 12-tunnise perioodiga. Geofüüsikaliste rakettidega tehtud vaatlused näitavad aga, et sellisel resonantsil puuduvad temperatuuri põhjused. Selle probleemi lahendamisel tuleb ilmselt arvesse võtta kõiki atmosfääri hüdrodünaamilisi ja soojuslikke iseärasusi. Maapinnal ekvaatori lähedal, kus loodete kõikumiste mõju on maksimaalne, annab see atmosfäärirõhu muutuse 0,1%. Loodetuule kiirus on ca. 0,3 km/h. Atmosfääri keeruka soojusstruktuuri tõttu (eriti minimaalse temperatuuri olemasolu mesopausis) intensiivistuvad loodete õhuvoolud ja näiteks 70 km kõrgusel on nende kiirus ligikaudu 160 korda suurem kui õhuvooludel. maapinnale, millel on olulised geofüüsikalised tagajärjed. Arvatakse, et ionosfääri alumises osas (kiht E) liiguvad loodete kõikumised ioniseeritud gaasi Maa magnetväljas vertikaalselt ja seetõttu tekivad siin elektrivoolud. Need Maa pinnal pidevalt tekkivad voolude süsteemid on loodud magnetvälja häirete tõttu. Magnetvälja igapäevased kõikumised on arvutatud väärtustega üsna hästi kooskõlas, mis annab veenvaid tõendeid "atmosfääridünamo" loodete mehhanismide teooria kasuks. Ionosfääri alumises osas (E-kihis) tekkivad elektrivoolud peavad kuhugi liikuma ja seetõttu peab vooluring olema valmis. Analoogia dünamoga saab täielikuks, kui käsitleda vastutulevat liikumist mootori tööna. Eeldatakse, et elektrivoolu vastupidine tsirkulatsioon toimub ionosfääri kõrgemas kihis (F) ja see vastuvool võib seletada mõningaid selle kihi eripärasid. Lõpuks peaks loodete mõju tekitama ka horisontaalseid voogusid E-kihis ja seega ka F-kihis.
Ionosfäär. Püüdes selgitada aurorade tekkemehhanismi, püüdsid teadlased 19. sajandil. tegi ettepaneku, et atmosfääris on elektriliselt laetud osakestega tsoon. 20. sajandil katseliselt saadi veenvaid tõendeid raadiolaineid peegeldava kihi olemasolust 85–400 km kõrgusel. Nüüdseks on teada, et selle elektrilised omadused tulenevad atmosfäärigaasi ionisatsioonist. Seetõttu nimetatakse seda kihti tavaliselt ionosfääriks. Mõju raadiolainetele ilmneb peamiselt vabade elektronide olemasolu tõttu ionosfääris, kuigi raadiolainete levimise mehhanism on seotud suurte ioonide olemasoluga. Viimased pakuvad huvi ka atmosfääri keemiliste omaduste uurimisel, kuna need on aktiivsemad kui neutraalsed aatomid ja molekulid. Ionosfääris toimuvad keemilised reaktsioonid mängivad olulist rolli selle energia- ja elektrilises tasakaalus.
Normaalne ionosfäär. Geofüüsikaliste rakettide ja satelliitide abil tehtud vaatlused on andnud hulgaliselt uut teavet, mis näitab, et atmosfääri ioniseerumine toimub laia päikesekiirguse mõjul. Selle põhiosa (üle 90%) on koondunud spektri nähtavasse ossa. Ultraviolettkiirgus lühema lainepikkusega ja rohkem energiat, kui violetseid valguskiiri, kiirgab Päikese atmosfääri sisemises osas (kromosfääris) vesinik ja röntgenikiirgust, mille energia on veelgi suurem, kiirgavad Päikese väliskesta (koroona) gaasid. Ionosfääri normaalne (keskmine) seisund on tingitud pidevast võimsast kiirgusest. Tavalises ionosfääris toimuvad korrapärased muutused, mis on tingitud Maa igapäevasest pöörlemisest ja keskpäevase päikesekiirte langemisnurga hooajalistest erinevustest, kuid ka ettearvamatuid ja järske muutusi ionosfääri seisundis.
Häired ionosfääris. Nagu teada, tekivad Päikesel võimsad tsükliliselt korduvad häired, mis saavutavad maksimumi iga 11 aasta järel. Rahvusvahelise geofüüsika aasta (IGY) programmi raames tehtud vaatlused langesid kogu süstemaatiliste meteoroloogiliste vaatluste perioodi jooksul kokku päikese kõrgeima aktiivsuse perioodiga, s.o. 18. sajandi algusest. Suure aktiivsusega perioodidel suureneb mõne Päikese piirkonna heledus mitu korda ning need saadavad välja võimsaid ultraviolett- ja röntgenikiirguse impulsse. Selliseid nähtusi nimetatakse päikesepõletusteks. Need kestavad mitu minutit kuni üks kuni kaks tundi. Põletuse ajal purskab päikesegaas (peamiselt prootonid ja elektronid) ning elementaarosakesed tormavad avakosmosesse. Selliste sähvatuste ajal Päikesest lähtuv elektromagnetiline ja korpuskulaarne kiirgus avaldab tugevat mõju Maa atmosfäärile. Esialgset reaktsiooni täheldatakse 8 minutit pärast põlengut, kui Maale jõuab intensiivne ultraviolett- ja röntgenkiirgus. Selle tulemusena suureneb ionisatsioon järsult; Röntgenikiirgus tungib atmosfääri ionosfääri alumise piirini; elektronide arv nendes kihtides suureneb nii palju, et raadiosignaalid neelduvad peaaegu täielikult (“kustuvad”). Kiirguse täiendav neeldumine põhjustab gaasi soojenemist, mis aitab kaasa tuulte tekkele. Ioniseeritud gaas on elektrijuht ja Maa magnetväljas liikudes tekib dünamoefekt ja elektrit. Sellised voolud võivad omakorda tekitada märgatavaid häireid magnetväljas ja avalduda magnettormidena. See esialgne etapp võtab ainult aega lühikest aega, mis vastab päikesesähvatuse kestusele. Päikese võimsate põletuste ajal sööstab kiirendatud osakeste voog avakosmosesse. Kui see on suunatud Maa poole, algab teine ​​faas, millel on suur mõju atmosfääri seisundile. Paljud loodusnähtused, millest tuntuimad on aurorad, viitavad sellele, et Maale jõuab märkimisväärne hulk laetud osakesi (vt ka AURORAURAL). Sellegipoolest ei ole nende osakeste Päikesest eraldumise protsesse, nende trajektoore planeetidevahelises ruumis ning Maa magnetvälja ja magnetosfääriga interaktsiooni mehhanisme veel piisavalt uuritud. Probleem muutus keerulisemaks pärast seda, kui James Van Allen avastas 1958. aastal geomagnetväljas hoitavatest laetud osakestest koosnevad kestad. Need osakesed liiguvad ühelt poolkeralt teisele, pöörledes spiraalidena ümber magnetvälja joonte. Maa lähedal, väljajoonte kujust ja osakeste energiast sõltuval kõrgusel on “peegelduspunktid”, kus osakesed muudavad liikumissuunda vastupidiseks (joonis 3). Kuna magnetvälja tugevus väheneb Maast kaugenedes, on orbiidid, millel need osakesed liiguvad, mõnevõrra moonutatud: elektronid kalduvad itta ja prootonid läände. Seetõttu levitatakse neid vöödena üle maakera.



Päikese poolt atmosfääri kuumutamise mõned tagajärjed. Päikeseenergia mõjutab kogu atmosfääri. Maa magnetvälja laetud osakestest moodustuvad ja selle ümber pöörlevad vööd on juba eespool mainitud. Need vööd on maapinnale kõige lähemal subpolaarsetes piirkondades (vt joonis 3), kus täheldatakse aurorasid. Jooniselt 1 on näha, et Kanada auraalsetes piirkondades on termosfääri temperatuur oluliselt kõrgem kui USA edelaosas. On tõenäoline, et kinnipüütud osakesed vabastavad osa oma energiast atmosfääri, eriti peegelduspunktide lähedal asuvate gaasimolekulidega kokkupõrkel ja lahkuvad oma varasematest orbiitidest. Nii soojendatakse kõrgeid atmosfäärikihte auraalses tsoonis. Teine oluline avastus tehti tehissatelliitide orbiite uurides. Smithsoniani astrofüüsikalise observatooriumi astronoom Luigi Iacchia usub, et väikesed kõrvalekalded nendel orbiitidel on tingitud atmosfääri tiheduse muutumisest, mida Päike soojendab. Ta pakkus välja, et ionosfääris on rohkem kui 200 km kõrgusel maksimaalne elektrontihedus, mis ei vasta päikese keskpäevale, kuid hõõrdejõudude mõjul hilineb selle suhtes umbes kaks tundi. Sel ajal täheldatakse 600 km kõrgusele tüüpilisi atmosfääri tiheduse väärtusi tasemel umbes. 950 km. Lisaks kogeb maksimaalne elektrontihedus ebaregulaarseid kõikumisi Päikese ultraviolett- ja röntgenkiirguse lühiajaliste välkude tõttu. L. Iacchia avastas ka lühiajalised õhutiheduse kõikumised, mis vastavad päikesekiirtele ja magnetvälja häiretele. Neid nähtusi seletatakse päikesest pärinevate osakeste tungimisega Maa atmosfääri ja nende kihtide kuumenemisega, kus satelliidid tiirlevad.
ATMOSFIERILINE ELEKTER
Atmosfääri pinnakihis allub väike osa molekulidest ionisatsioonile kosmiliste kiirte, radioaktiivsete kivimite kiirguse ja õhus endas olevate raadiumi (peamiselt radooni) lagunemissaaduste mõjul. Ionisatsiooni käigus kaotab aatom elektroni ja omandab positiivse laengu. Vaba elektron ühineb kiiresti teise aatomiga, moodustades negatiivselt laetud iooni. Sellistel paaris positiivsetel ja negatiivsetel ioonidel on molekuli suurus. Atmosfääris olevad molekulid kipuvad nende ioonide ümber koonduma. Mitmed molekulid koos iooniga moodustavad kompleksi, mida tavaliselt nimetatakse "kergeks iooniks". Atmosfäär sisaldab ka molekulide komplekse, mida meteoroloogias tuntakse kondensatsioonituumadena, mille ümber, kui õhk on niiskusega küllastunud, algab kondenseerumisprotsess. Need tuumad on soola ja tolmu osakesed, samuti tööstuslikest ja muudest allikatest õhku paisatud saasteained. Kerged ioonid kinnituvad sageli sellistele tuumadele, moodustades "raskeid ioone". Elektrivälja mõjul liiguvad kerged ja rasked ioonid ühest atmosfääri piirkonnast teise, kandes üle elektrilaenguid. Kuigi atmosfääri ei peeta üldiselt elektrit juhtivaks, on sellel siiski teatav juhtivus. Seetõttu kaotab õhku jäetud laetud keha aeglaselt oma laengu. Atmosfääri juhtivus suureneb kõrgusega seoses kosmilise kiirguse intensiivsuse suurenemisega, ioonikadude vähenemisega kõrgemates tingimustes. madal rõhk (ja seetõttu suurema keskmise vaba teega) ja ka väiksema arvu raskete tuumade tõttu. Atmosfääri juhtivus saavutab maksimaalse väärtuse kõrgusel ca. 50 km, nn "kompensatsioonitase". Teadaolevalt on Maa pinna ja “kompensatsioonitaseme” vahel pidev mitmesaja kilovoltine potentsiaalide erinevus, s.o. pidev elektriväli. Selgus, et potentsiaalide vahe teatud õhus mitme meetri kõrgusel asuva punkti ja Maa pinna vahel on väga suur - üle 100 V. Atmosfäär on positiivse laenguga ja maapind on negatiivselt laetud. . Kuna elektriväli on piirkond, mille igas punktis on teatud potentsiaali väärtus, saame rääkida potentsiaalsest gradiendist. Selge ilmaga on paari meetri madalamal atmosfääri elektrivälja tugevus peaaegu konstantne. Pinnakihis oleva õhu elektrijuhtivuse erinevuste tõttu allub potentsiaalne gradient igapäevastele kõikumistele, mille kulg on paikkonniti oluliselt erinev. Kohalike õhusaasteallikate puudumisel – ookeanide kohal, kõrgel mägedes või polaaraladel – on potentsiaalse gradiendi ööpäevane kõikumine selge ilmaga sama. Gradiendi suurus sõltub universaalsest ehk Greenwichi keskmisest ajast (UT) ja saavutab maksimumi 19 tunni juures. E. Appleton oletas, et see maksimaalne elektrijuhtivus langeb tõenäoliselt kokku planeedi skaalal suurima äikese aktiivsusega. Äikese ajal lööb välgutabamus Maa pinnale negatiivse laengu, kuna kõige aktiivsemate rünksajupilvede alustel on märkimisväärne negatiivne laeng. Äikesepilvede tipud on positiivse laenguga, mis Holzeri ja Saxoni arvutuste järgi äikese ajal nende tippudest ära voolab. Ilma pideva täiendamiseta neutraliseeriks maapinna laengu atmosfääri juhtivus. Eeldust, et äikesetormid hoiavad maapinna potentsiaalse erinevuse ja "kompensatsioonitaseme" vahel, toetavad statistilised andmed. Näiteks jõeorus on maksimaalne äikesetormide arv. Amazonid. Kõige sagedamini esineb seal äikest päeva lõpus, s.o. OKEI. 19:00 Greenwichi aja järgi, kui potentsiaalne gradient on kõikjal maailmas maksimaalne. Veelgi enam, potentsiaalse gradiendi ööpäevaste varieeruvuskõverate kuju hooajalised kõikumised on samuti täielikult kooskõlas äikesetormide globaalse jaotuse andmetega. Mõned teadlased väidavad, et Maa elektrivälja allikas võib olla välist päritolu, kuna arvatakse, et elektriväljad eksisteerivad ionosfääris ja magnetosfääris. Tõenäoliselt seletab see asjaolu väga kitsaste piklike auroravormide ilmumist, mis sarnanevad kulisside ja kaartega.
(vt ka AURORA LIGHTS). Potentsiaalse gradiendi ja atmosfääri juhtivuse olemasolu tõttu hakkavad laetud osakesed liikuma "kompensatsioonitaseme" ja Maa pinna vahel: positiivselt laetud ioonid Maa pinna suunas ja negatiivselt laetud ioonid sellest ülespoole. Selle voolu tugevus on u. 1800 A. Kuigi see väärtus tundub suur, tuleb meeles pidada, et see on jaotunud kogu Maa pinnal. Voolutugevus õhusambas, mille põhipindala on 1 m2, on ainult 4 * 10 -12 A. Teisest küljest võib voolutugevus pikselahenduse ajal ulatuda mitme amprini, kuigi loomulikult on selline tühjenemise kestus on lühike - sekundi murdosast terve sekundini või veidi rohkem korduvate löökide korral. Välk pakub suurt huvi mitte ainult omapärase loodusnähtusena. See võimaldab jälgida elektrilahendust gaasilises keskkonnas mitmesaja miljoni voldi pingel ja mitme kilomeetri kaugusel elektroodide vahel. 1750. aastal tegi B. Franklin Londoni Kuninglikule Seltsile ettepaneku viia läbi eksperiment isoleerivale alusele kinnitatud raudvardaga, mis on kinnitatud kõrge torn. Ta eeldas, et äikesepilve lähenedes tornile koondub algselt neutraalse varda ülemisse otsa vastupidise märgiga laeng ja alumisse otsa sama märgiga laeng nagu pilve põhjas. . Kui elektrivälja tugevus pikselahenduse ajal piisavalt suureneb, voolab varda ülemisest otsast laengud osaliselt õhku ja varras omandab pilve alusega sama märgi laengu. Franklini pakutud eksperimenti Inglismaal läbi ei viidud, kuid selle viis 1752. aastal Pariisi lähedal Marlys läbi prantsuse füüsik Jean d'Alembert. Ta kasutas sisestatud klaaspudel(mis toimis isolaatorina) 12 m pikkune raudvarras, kuid ei pannud seda torni peale. 10. mail teatas tema assistent, et kui lati kohal oli äikesepilv, tekkisid sädemed, kui sinna toodi maandatud juhe. Franklin ise, kes ei teadnud Prantsusmaal tehtud edukast eksperimendist, viis sama aasta juunis läbi oma kuulsa katse tuulelohega ja täheldas sellega seotud traadi otsas elektrisädemeid. Järgmisel aastal vardalt kogutud laenguid uurides tegi Franklin kindlaks, et äikesepilvede alused olid tavaliselt negatiivselt laetud. Täpsemad välguuuringud said võimalikuks 19. sajandi lõpus. tänu fotomeetodite täiustamisele, eriti pärast pöörlevate objektiividega aparaadi leiutamist, mis võimaldas salvestada kiiresti arenevaid protsesse. Seda tüüpi kaamerat kasutati laialdaselt sädelahenduste uurimisel. On leitud, et välku on mitut tüüpi, kõige levinumad on joon-, tasapinnalised (pilves) ja keravälgud (õhulahendused). Lineaarne välk on sädelahendus pilve ja maapinna vahel, mis järgneb allapoole suunatud harudega kanalile. Lame välk tekib äikesepilve sees ja ilmneb hajutatud valguse välkudena. Äikesepilvest algavad keravälgu õhuheitmed on sageli suunatud horisontaalselt ega ulatu maapinnani.



Pikselahendus koosneb tavaliselt kolmest või enamast korduvast lahendusest – sama rada järgivatest impulssidest. Järjestikuste impulsside vahelised intervallid on väga lühikesed, 1/100 kuni 1/10 s (see põhjustabki välgu värelemist). Üldiselt kestab välk umbes sekundi või vähem. Võib kirjeldada tüüpilist välgu arengu protsessi järgmisel viisil. Esiteks tormab ülevalt maapinnale nõrgalt helendav juhtlahendus. Kui ta selleni jõuab, liigub juhi rajatud kanali kaudu maapinnast üles eredalt helendav tagasivool ehk põhiheide. Juhtiv eritis liigub reeglina siksakiliselt. Selle leviku kiirus ulatub sajast kuni mitmesaja kilomeetrini sekundis. Oma teel ioniseerib see õhumolekule, luues suurenenud juhtivusega kanali, mille kaudu pöördlahendus liigub ülespoole kiirusega, mis on ligikaudu sada korda suurem kui juhtiva tühjenemise kiirus. Kanali suurust on raske määrata, kuid juhtlahenduse läbimõõt on hinnanguliselt 1-10 m ja tagasivoolu läbimõõt on mitu sentimeetrit. Välklahendus tekitab raadiohäireid, kiirgades raadiolaineid laias vahemikus – alates 30 kHz kuni ülimadalate sagedusteni. Suurim raadiolainete emissioon jääb ilmselt vahemikku 5–10 kHz. Sellised madala sagedusega raadiohäired on "koondunud" ionosfääri alumise piiri ja maapinna vahelisse ruumi ning võivad levida allikast tuhandete kilomeetrite kaugusele.
MUUTUSED ATmosfääris
Meteooride ja meteoriitide mõju. Kuigi meteoorisajud tekitavad mõnikord dramaatilise valguse kuva, on üksikuid meteoore harva näha. Palju rohkem on nähtamatuid meteoore, mis on liiga väikesed, et olla atmosfääri neeldumisel nähtavad. Mõned väikseimad meteoorid ilmselt üldse ei kuumene, vaid jäävad ainult atmosfääri poolt kinni. Neid väikeseid osakesi, mille suurus ulatub mõnest millimeetrist kümne tuhande millimeetrini, nimetatakse mikrometeoriitideks. Iga päev atmosfääri siseneva meteoriitmaterjali kogus on 100–10 000 tonni, kusjuures suurem osa sellest materjalist pärineb mikrometeoriitidest. Kuna meteoriitne aine põleb atmosfääris osaliselt, täiendatakse selle gaasi koostist mitmesuguste jälgedega keemilised elemendid. Näiteks toovad kivimeteoorid atmosfääri liitiumi. Metallmeteooride põlemisel tekivad pisikesed kerakujulised raua, raud-nikli ja muud tilgad, mis läbivad atmosfääri ja settivad maapinnale. Neid võib leida Gröönimaal ja Antarktikas, kus jääkiht püsib aastaid peaaegu muutumatuna. Okeanoloogid leiavad neid ookeani põhjasetetest. Enamik atmosfääri sisenevaid meteooriosakesi settib umbes 30 päeva jooksul. Mõned teadlased usuvad, et see kosmiline tolm mängib olulist rolli selliste atmosfäärinähtuste, nagu vihm, tekkes, kuna see toimib veeauru kondensatsioonituumadena. Seetõttu eeldatakse, et sademed on statistiliselt seotud suurte meteoorisadudega. Kuid mõned eksperdid usuvad, et kuna meteoriidimaterjali kogusaamine on kümneid kordi suurem kui selle sissevõtt isegi suurima meteoorisadu korral, muutub koguarv selle aine ühe sellise vihma tagajärjel tekkiva koguse võib tähelepanuta jätta. Siiski pole kahtlust, et suurimad mikrometeoriidid ja loomulikult nähtavad meteoriidid jätavad atmosfääri kõrgetesse kihtidesse, peamiselt ionosfääri, pikki ionisatsioonijälgi. Selliseid jälgi saab kasutada kaugraadioside jaoks, kuna need peegeldavad kõrgsageduslikke raadiolaineid. Atmosfääri sisenevate meteooride energia kulutatakse peamiselt ja võib-olla täielikult selle soojendamiseks. See on atmosfääri termilise tasakaalu üks väiksemaid komponente.
Tööstusliku päritoluga süsinikdioksiid. Karboni perioodil oli puittaimestik Maal laialt levinud. Suurem osa taimede poolt sel ajal neelatud süsihappegaasist kogunes söemaardlatesse ja õli sisaldavatesse setetesse. Inimene on õppinud kasutama nende mineraalide tohutuid varusid energiaallikana ja viib nüüd kiiresti süsihappegaasi ainete ringi tagasi. Fossiilne olek on tõenäoliselt ca. 4*10 13 tonni süsinikku. Inimkond on viimase sajandi jooksul põletanud nii palju fossiilkütust, et ligikaudu 4*10 11 tonni süsinikku on taas atmosfääri sattunud. Praegu on seal u. 2 * 10 12 tonni süsinikku ja järgmise saja aasta jooksul võib see näitaja fossiilkütuste põletamise tõttu kahekordistuda. Kuid mitte kogu süsinik ei jää atmosfääri: osa sellest lahustub ookeanivees, osa neelavad taimed ja osa seotakse kivimite murenemise käigus. Praegu ei ole veel võimalik ennustada, kui palju süsihappegaasi atmosfääri sisaldab või millist mõju see täpselt maakera kliimale avaldab. Siiski arvatakse, et igasugune selle sisalduse suurenemine põhjustab soojenemist, kuigi pole sugugi vajalik, et igasugune soojenemine kliimat oluliselt mõjutaks. Süsinikdioksiidi kontsentratsioon atmosfääris suureneb mõõtmistulemuste järgi märgatavalt, kuigi aeglases tempos. Antarktikas Rossi jääriiulil asuva Svalbardi ja Little America jaama kliimaandmed näitavad aasta keskmise temperatuuri tõusu vastavalt 5 °C ja 2,5 °C umbes 50-aastase perioodi jooksul.
Kokkupuude kosmilise kiirgusega. Kui suure energiaga kosmilised kiired interakteeruvad atmosfääri üksikute komponentidega, tekivad radioaktiivsed isotoobid. Nende hulgas paistab silma 14C süsiniku isotoop, mis koguneb taimede ja loomade kudedesse. Mõõtes orgaaniliste ainete radioaktiivsust, mis pole pikka aega süsinikku vahetanud keskkond, nende vanust saab määrata. Kõige enam on ennast tõestanud radiosüsiniku dateerimise meetod usaldusväärne viis fossiilsete organismide ja materiaalse kultuuri objektide dateerimine, mille vanus ei ületa 50 tuhat aastat. Teisi pika poolestusajaga radioaktiivseid isotoope saab kasutada sadade tuhandete aastate vanuste materjalide dateerimiseks, kui on võimalik lahendada ülimadala radioaktiivsuse mõõtmise põhiülesanne.
(vt ka RADIOSÜSIINIKU TUHTUMINE).
MAA ATmosfääri päritolu
Atmosfääri tekkelugu pole veel täielikult usaldusväärselt rekonstrueeritud. Sellegipoolest on selle koostises tuvastatud mõned tõenäolised muutused. Atmosfääri teke algas vahetult pärast Maa teket. On küllaltki põhjust arvata, et Maa evolutsiooni käigus ning tänapäevastele lähedaste mõõtmete ja massi omandamise käigus kaotas see peaaegu täielikult oma esialgse atmosfääri. Arvatakse, et varajases staadiumis oli Maa sulas olekus ja ca. 4,5 miljardit aastat tagasi kujunes sellest tahke keha. Seda verstaposti peetakse geoloogilise kronoloogia alguseks. Sellest ajast alates on atmosfääri areng olnud aeglane. Mõnede geoloogiliste protsessidega, nagu vulkaanipursete ajal väljavalatud laava, kaasnes gaaside eraldumine Maa sisikonnast. Tõenäoliselt sisaldasid need lämmastikku, ammoniaaki, metaani, veeauru, süsinikmonooksiidi ja dioksiidi. Päikese ultraviolettkiirguse mõjul lagunes veeaur vesinikuks ja hapnikuks, kuid vabanenud hapnik reageeris süsinikmonooksiidiga, moodustades süsihappegaasi. Ammoniaak lagunes lämmastikuks ja vesinikuks. Difusiooniprotsessi käigus tõusis vesinik üles ja lahkus atmosfäärist ning raskem lämmastik ei saanud aurustuda ja kogunes järk-järgult, muutudes selle põhikomponendiks, kuigi osa sellest seostus keemiliste reaktsioonide käigus. Ultraviolettkiirte ja elektrilahenduste mõjul sattus tõenäoliselt Maa algses atmosfääris olnud gaaside segu keemilistesse reaktsioonidesse, mille tulemusena tekkisid orgaanilised ained, eelkõige aminohapped. Järelikult võis elu tekkida tänapäevasest põhimõtteliselt erinevas atmosfääris. Primitiivsete taimede tulekuga algas fotosünteesi protsess (vt ka FOTOSÜNTEES), millega kaasnes vaba hapniku vabanemine. See gaas, eriti pärast difundeerimist atmosfääri ülemistesse kihtidesse, hakkas kaitsma oma alumisi kihte ja Maa pinda eluohtliku ultraviolett- ja röntgenkiirguse eest. Hinnanguliselt võib ainult 0,00004 tänapäevase hapnikumahu olemasolu kaasa tuua poole väiksema osoonikontsentratsiooniga kihi moodustumise, mis pakkus siiski väga olulist kaitset ultraviolettkiirte eest. Samuti on tõenäoline, et esmane atmosfäär sisaldas palju süsihappegaasi. See kulus ära fotosünteesi käigus ja selle kontsentratsioon pidi vähenema nii taimemaailma arenedes kui ka teatud geoloogiliste protsesside käigus neeldumise tõttu. Kuna kasvuhooneefekt on seotud süsihappegaasi olemasoluga atmosfääris, arvavad mõned teadlased, et selle kontsentratsiooni kõikumine on Maa ajaloos üks olulisi kliimamuutuste, näiteks jääaegade, olulisi põhjusi. Kaasaegses atmosfääris leiduv heelium on tõenäoliselt suures osas uraani, tooriumi ja raadiumi radioaktiivse lagunemise saadus. Need radioaktiivsed elemendid eraldavad alfaosakesi, mis on heeliumi aatomite tuumad. Kuna radioaktiivse lagunemise käigus elektrilaengut ei teki ega kao, on iga alfaosakese kohta kaks elektroni. Selle tulemusena ühineb see nendega, moodustades neutraalsed heeliumi aatomid. Radioaktiivsed elemendid sisalduvad kivimites hajutatud mineraalides, mistõttu nendes säilib märkimisväärne osa radioaktiivse lagunemise tulemusena tekkinud heeliumist, mis pääseb väga aeglaselt atmosfääri. Teatud kogus heeliumi tõuseb difusiooni tõttu ülespoole eksosfääri, kuid pideva sissevoolu tõttu maapinnalt on selle gaasi maht atmosfääris konstantne. Tähevalguse spektraalanalüüsi ja meteoriitide uurimise põhjal on võimalik hinnata erinevate keemiliste elementide suhtelist arvukust Universumis. Neooni kontsentratsioon kosmoses on umbes kümme miljardit korda suurem kui Maal, krüptoon kümme miljonit korda ja ksenoon miljon korda suurem. Sellest järeldub, et nende inertsete gaaside kontsentratsioon, mis olid algselt Maa atmosfääris olemas ja keemiliste reaktsioonide käigus ei täitunud, vähenes oluliselt, tõenäoliselt isegi Maa esmase atmosfääri kadumise staadiumis. Erandiks on inertgaasi argoon, kuna isotoobi 40Ar kujul tekib see endiselt kaaliumi isotoobi radioaktiivse lagunemise käigus.
OPTILISED NÄHTUSED
Optiliste nähtuste mitmekesisus atmosfääris on tingitud erinevatel põhjustel. Levinumate nähtuste hulka kuuluvad välk (vt eespool) ning väga suurejoonelised põhja- ja lõunamaa aurorad (vt ka AURORA). Lisaks on eriti huvitavad vikerkaar, gal, parhelium (valepäike) ja kaared, kroon, halod ja Brockeni kummitused, miraažid, Püha Elmo tuled, helendavad pilved, rohelised ja krepuskulaarsed kiired. Vikerkaar on kõige ilusam atmosfäärinähtus. Tavaliselt on see tohutu kaar, mis koosneb mitmevärvilistest triipudest, mida täheldatakse siis, kui Päike valgustab ainult osa taevast ja õhk on veepiiskadest küllastunud, näiteks vihma ajal. Mitmevärvilised kaared on paigutatud spektraalsesse järjestusse (punane, oranž, kollane, roheline, sinine, indigo, violetne), kuid värvid pole peaaegu kunagi puhtad, kuna triibud kattuvad üksteisega. Reeglina on vikerkaare füüsikalised omadused oluliselt erinevad ja seetõttu välimus nad on väga mitmekesised. Nende ühine joon on see, et kaare keskpunkt asub alati Päikesest vaatlejani tõmmatud sirgel. Peamine vikerkaar on kaar, mis koosneb kõige eredamatest värvidest – väljast punane ja seest lilla. Mõnikord on nähtav ainult üks kaar, kuid sageli ilmub põhivikerkaare välisküljele sekundaarne. Sellel pole nii erksad värvid kui esimesel ning punased ja lillad triibud selles vahetavad kohti: punane asub sees. Põhivikerkaare tekkimist seletatakse kahekordse murdumisega (vt ka OPTIKA) ja päikesevalguse kiirte ühekordse sisepeegeldusega (vt joon. 5). Tungides veetilga (A) sisse, valguskiir murdub ja laguneb, justkui läbiks prisma. Seejärel jõuab see tilga vastaspinnale (B), peegeldub sellelt ja jätab tilga väljapoole (C). Sel juhul murdub valguskiir teist korda enne vaatlejani jõudmist. Algne valge kiir laguneb kiirteks erinevad värvid 2° lahknemisnurgaga. Sekundaarse vikerkaare moodustumisel toimub päikesekiirte kahekordne murdumine ja kahekordne peegeldus (vt joonis 6). Sel juhul valgus murdub, tungides tilka läbi selle alumise osa (A) ja peegeldub sealt sisepind langeb esmalt punktis B, seejärel punktis C. Punktis D valgus murdub, jättes tilga vaatleja poole.





Päikesetõusul ja päikeseloojangul näeb vaatleja vikerkaart poole ringiga võrdse kaare kujul, kuna vikerkaare telg on paralleelne horisondiga. Kui Päike on horisondi kohal kõrgemal, on vikerkaare kaar väiksem kui pool ümbermõõdust. Kui Päike tõuseb üle 42° horisondi kohal, kaob vikerkaar. Kõikjal, välja arvatud kõrgetel laiuskraadidel, ei saa vikerkaar ilmuda keskpäeval, kui Päike on liiga kõrgel. Huvitav on hinnata kaugust vikerkaarest. Kuigi mitmevärviline kaar näib paiknevat samal tasapinnal, on see illusioon. Tegelikult on vikerkaarel tohutu sügavus ja seda võib ette kujutada õõnsa koonuse pinnana, mille tipus vaatleja asub. Koonuse telg ühendab Päikest, vaatlejat ja vikerkaare keskpunkti. Vaatleja vaatab justkui piki selle koonuse pinda. Kaks inimest ei näe kunagi täpselt sama vikerkaart. Loomulikult võib täheldada sisuliselt sama efekti, kuid need kaks vikerkaart on erinevas asendis ja on moodustatud erinevatest veepiiskadest. Kui vihm või prits moodustab vikerkaare, saavutatakse täielik optiline efekt kõigi vikerkaarekoonuse pinda ületavate veepiiskade koosmõjul, mille tipus on vaatleja. Iga tilga roll on üürike. Vikerkaarekoonuse pind koosneb mitmest kihist. Neid kiiresti ületades ja kriitiliste punktide seeriat läbides, lagundab iga tilk päikesekiire koheselt kogu spektriks rangelt määratletud järjestuses - punasest lillani. Paljud tilgad lõikuvad koonuse pinda samamoodi, nii et vikerkaar näib vaatlejale pidevana nii piki kaaret kui ka risti. Halod on valged või sillerdavad valguskaared ja ringid ümber Päikese või Kuu ketta. Need tekivad valguse murdumise või peegeldumise tõttu atmosfääri jää- või lumekristallide poolt. Halo moodustavad kristallid asuvad kujuteldava koonuse pinnal, mille telg on suunatud vaatlejalt (koonuse tipust) Päikesele. Teatud tingimustel võib atmosfäär olla küllastunud väikeste kristallidega, mille paljud tahud moodustavad täisnurga Päikest, vaatlejat ja neid kristalle läbiva tasapinnaga. Sellised näod peegeldavad sissetulevaid valguskiiri hälbega 22°, moodustades halo, mis on seest punakas, kuid võib koosneda ka kõigist spektri värvidest. Vähem levinud on 46° nurgaraadiusega halo, mis paikneb kontsentriliselt ümber 22° halo. Selle siseküljel on ka punakas toon. Selle põhjuseks on ka valguse murdumine, mis sel juhul tekib täisnurki moodustavate kristallide servadel. Sellise halo rõnga laius ületab 2,5°. Nii 46-kraadised kui ka 22-kraadised halod kipuvad olema kõige eredamad rõnga üla- ja alaosas. Haruldane 90-kraadine halo on nõrgalt helendav, peaaegu värvitu rõngas, millel on ühine keskus kahe teise haloga. Kui see on värviline, on sõrmuse välisküljel punane värv. Seda tüüpi halo esinemise mehhanism pole täielikult mõistetav (joonis 7).



Parhelia ja kaared. Parheeli ring (või valede päikeste ring) on ​​valge rõngas, mille keskpunkt on seniidipunkt ja mis läbib Päikest paralleelselt horisondiga. Selle tekke põhjuseks on päikesevalguse peegeldumine jääkristallide pindade servadelt. Kui kristallid on õhus piisavalt ühtlaselt jaotunud, muutub nähtavaks täielik ring. Parheeliad ehk valepäikesed on Päikest meenutavad eredalt helendavad laigud, mis tekivad parheeliringi ristumiskohtades halodega, mille nurkraadiused on 22°, 46° ja 90°. Kõige sagedamini esinev ja heledam parheel moodustub 22-kraadise halo ristumiskohas, mis on tavaliselt värvitud peaaegu kõigis vikerkaarevärvides. Vale päikest 46- ja 90-kraadise haloga ristumiskohtades täheldatakse palju harvemini. 90-kraadise haloga ristumiskohas tekkivaid parheeliaid nimetatakse paranteliaks või valedeks vastupäikesteks. Mõnikord on nähtav ka anteel (päikesevastane) - hele laik, mis asub parheelirõngal täpselt Päikese vastas. Eeldatakse, et selle nähtuse põhjuseks on päikesevalguse kahekordne sisepeegeldus. Peegeldunud kiir järgib langeva kiirga sama rada, kuid sisse vastupidine suund. Seniidilähedane kaar, mida mõnikord valesti nimetatakse 46-kraadise halo ülemiseks puutujakaareks, on 90-kraadine või vähem kaar, mille keskpunkt on seniidis ja mis asub umbes 46° Päikese kohal. See on harva nähtav ja ainult mõne minuti, sellel on erksad värvid ja punane värvus piirdub kaare välisküljega. Seniidilähedane kaar on tähelepanuväärne oma värvi, heleduse ja selgete piirjoonte poolest. Teine huvitav ja väga haruldane halotüübi optiline efekt on Lowitzi kaar. Need tekivad parheelia jätkuna ristumiskohas 22-kraadise haloga, ulatuvad halo välisküljelt ja on Päikese poole kergelt nõgusad. Valkja valguse sambad, nagu erinevad ristid, on mõnikord nähtavad koidikul või videvikus, eriti polaaraladel, ja need võivad olla kaasas nii Päikese kui ka Kuuga. Mõnikord täheldatakse Kuu halosid ja muid ülalkirjeldatutele sarnaseid efekte, kusjuures kõige tavalisema kuu halo (rõngas ümber Kuu) on nurga raadius 22°. Nii nagu valepäikesed, võivad tekkida ka valekuud. Koroonid ehk kroonid on väikesed kontsentrilised värvirõngad Päikese, Kuu või muude eredate objektide ümber, mida aeg-ajalt vaadeldakse, kui valgusallikas on poolläbipaistvate pilvede taga. Krooni raadius on väiksem kui halo raadius ja on u. 1-5°, sinine või violetne rõngas on Päikesele kõige lähemal. Koroon tekib siis, kui valgus hajutatakse väikeste veepiiskade poolt, moodustades pilve. Mõnikord paistab kroon Päikest (või Kuud) ümbritseva helendava laiguna (või halona), mis lõpeb punaka rõngaga. Muudel juhtudel on väljaspool halot nähtavad vähemalt kaks kontsentrilist suurema läbimõõduga, väga nõrgalt värvitud rõngast. Selle nähtusega kaasnevad vikerkaarepilved. Mõnikord on väga kõrgete pilvede servad erksavärvilised.
Gloria (halod). Eritingimustes tekivad ebatavalised atmosfäärinähtused. Kui Päike on vaatleja taga ja selle vari projitseeritakse lähedalasuvatele pilvedele või udukardinale, näete teatud atmosfääriseisundis inimese pea varju ümber värvilist helendavat ringi - halo. Tavaliselt tekib selline halo tänu valguse peegeldumisele kastepiiskadelt rohtunud murul. Gloriad leidub üsna sageli ka lennuki varju all olevatele pilvedele.
Brockeni kummitused. Mõnel pool maakera, kui päikesetõusu või -loojangu ajal künkal asuva vaatleja vari lühikese vahemaa kaugusel asuvatel pilvedel tema selja taha jääb, avastatakse silmatorkav efekt: vari omandab kolossaalsed mõõtmed. Selle põhjuseks on valguse peegeldumine ja murdumine udus olevate pisikeste veepiiskade poolt. Kirjeldatud nähtust nimetatakse "Brockeni kummituseks" Saksamaal Harzi mägede tipu järgi.
Miraažid- optiline efekt, mis on põhjustatud valguse murdumisest õhukihtide läbimisel erineva tihedusega ja väljendub virtuaalse pildi välimuses. Sel juhul võivad kauged objektid tunduda olevat tõstetud või langetatud nende tegeliku asukoha suhtes, samuti võivad need olla moonutatud ja omandada ebakorrapäraseid fantastilisi kujundeid. Miraažisid täheldatakse sageli kuumas kliimas, näiteks liivastel tasandikel. Madalamad miraažid on tavalised, kui kaugel asuv, peaaegu tasane kõrbepind võtab avavee ilme, eriti kui seda vaadata väikeselt kõrguselt või lihtsalt kuumutatud õhukihi kohal. See illusioon tekib tavaliselt kuumal asfaltteel, mis näeb välja nagu veepind kaugel ees. Tegelikkuses on see pind taeva peegeldus. Allapoole silmade kõrgust võivad sellesse "vette" ilmuda esemed, tavaliselt tagurpidi. Kuumutatud maapinna kohale moodustub "õhk". kihiline kook", ja maale lähim kiht on kõige kuumem ja nii haruldane, et seda läbivad valguslained on moonutatud, kuna nende levimise kiirus varieerub sõltuvalt keskkonna tihedusest. Ülemised miraažid on vähem levinud ja maalilisemad kui madalamad. Kaugemad objektid (sageli merehorisondi all) ilmuvad taevasse tagurpidi ja mõnikord ilmub sama objekti püstine kujutis üleval. See nähtus on tüüpiline külmadele piirkondadele, eriti kui toimub oluline temperatuuri inversioon, kui on soojem õhukiht külmema kihi kohal.See optiline efekt avaldub ebaühtlase tihedusega õhukihtides valguslaine frondi keeruliste levimismustrite tulemusena.Aeg-ajalt esineb väga ebatavalisi miraaže, eriti polaaraladel. piirkonnad.Miraažide esinemisel maismaal on puud ja muud maastiku komponendid tagurpidi Kõikidel juhtudel ülemises Miraažides on objektid selgemini nähtavad kui alumistes. Kui kahe õhumassi piiriks on vertikaaltasapind, täheldatakse mõnikord külgmisi miraaže.
Püha Elmo tuli. Mõned atmosfääris esinevad optilised nähtused (näiteks kuma ja levinuim meteoroloogiline nähtus – välk) on oma olemuselt elektrilised. Hoopis vähem levinud on St. Elmo tuled – helendavad kahvatusinised või lillad harjad pikkusega 30 cm kuni 1 m või rohkem, tavaliselt merel mastide otsas või laevatehaste otstes. Mõnikord tundub, et kogu laeva taglas on kaetud fosforiga ja helendab. Püha Elmo tuli ilmub mõnikord mäetippudele, samuti tornidele ja teravad nurgad kõrged hooned. See nähtus kujutab endast harja elektrilahendusi elektrijuhtide otstes, kui elektrivälja tugevus neid ümbritsevas atmosfääris oluliselt suureneb. Will-o'-the-wisps on nõrk sinakas või rohekas kuma, mida mõnikord täheldatakse soodes, kalmistutel ja krüptides. Sageli näevad need välja nagu küünlaleek, mis on tõstetud maapinnast umbes 30 cm kõrgusele, põleb vaikselt, ei anna soojust ja hõljub hetkeks objekti kohal. Valgus tundub täiesti tabamatu ja kui vaatleja läheneb, liigub see teise kohta. Selle nähtuse põhjuseks on orgaaniliste jääkide lagunemine ja rabagaasi metaani (CH4) või fosfiini (PH3) iseeneslik põlemine. Will-o'-the-wisps on erineva kujuga, mõnikord isegi sfäärilise kujuga. Roheline kiir – smaragdrohelise päikesevalguse sähvatus hetkel, mil viimane Päikesekiir horisondi taha kaob. Päikesevalguse punane komponent kaob esimesena, kõik teised järgnevad järjekorras ja viimasena jääb alles smaragdroheline. See nähtus ilmneb ainult siis, kui ainult päikeseketta serv jääb horisondi kohale, vastasel juhul tekib värvide segu. Krepuskulaarsed kiired on lahknevad päikesekiired, mis muutuvad nähtavaks tänu nende valgustamisele atmosfääri kõrgetes kihtides. Pilvede varjud moodustavad tumedaid triipe ja nende vahel levivad kiired. See efekt ilmneb siis, kui Päike on madalal horisondil enne koitu või pärast päikeseloojangut.

Maakera ümbritsevat gaasiümbrist nimetatakse atmosfääriks ja seda moodustavat gaasi õhuks. Sõltuvalt erinevatest füüsikalistest ja keemilistest omadustest jaguneb atmosfäär kihtideks. Mis need on, atmosfääri kihid?

Atmosfääri temperatuurikihid

Sõltuvalt kaugusest maapinnast muutub atmosfääri temperatuur ja seetõttu jaguneb see järgmisteks kihtideks:
Troposfäär. See on atmosfääri "madalaima" temperatuuriga kiht. Keskmistel laiuskraadidel on selle kõrgus 10-12 kilomeetrit ja troopikas - 15-16 kilomeetrit. Troposfääris langeb atmosfääriõhu temperatuur kõrguse kasvades, keskmiselt umbes 0,65°C iga 100 meetri kohta.
Stratosfäär. See kiht asub troposfääri kohal, kõrgusvahemikus 11-50 kilomeetrit. Troposfääri ja stratosfääri vahel on üleminekuline atmosfäärikiht - tropopaus. Tropopausi keskmine õhutemperatuur on -56,6°C, troopilises piirkonnas talvel -80,5°C ja suvel -66,5°C. Stratosfääri alumise kihi enda temperatuur langeb aeglaselt keskmiselt 0,2°C iga 100 meetri kohta ning ülemine kiht tõuseb ning stratosfääri ülemisel piiril on õhutemperatuur juba 0°C.
Mesosfäär. Kõrgusvahemikus 50-95 kilomeetrit stratosfääri kohal paikneb mesosfääri atmosfäärikiht. Seda eraldab stratosfäärist stratopaus. Mesosfääri temperatuur langeb kõrguse kasvades, keskmiselt on langus 0,35°C iga 100 meetri kohta.
Termosfäär. See atmosfäärikiht asub mesosfääri kohal ja on sellest eraldatud mesopausiga. Mesopausi temperatuur jääb vahemikku -85 kuni -90°C, kuid kõrguse tõustes kuumeneb termosfäär intensiivselt ja kõrgusvahemikus 200-300 kilomeetrit jõuab 1500°C-ni, misjärel see ei muutu. Termosfääri kuumenemine toimub päikese ultraviolettkiirguse hapniku neeldumise tagajärjel.

Atmosfääri kihid jagatud gaasi koostisega

Gaasi koostise järgi jaguneb atmosfäär homosfääriks ja heterosfääriks. Homosfäär on atmosfääri alumine kiht ja selle gaasiline koostis on homogeenne. Selle kihi ülemine piir möödub 100 kilomeetri kõrguselt.

Heterosfäär asub kõrgusvahemikus homosfäärist kuni atmosfääri välispiirini. Selle gaasi koostis on heterogeenne, kuna päikese- ja kosmilise kiirguse mõjul lagunevad heterosfääri õhumolekulid aatomiteks (fotodissotsiatsiooniprotsess).

Heterosfääris, kui molekulid lagunevad aatomiteks, eralduvad laetud osakesed – elektronid ja ioonid, mis loovad ioniseeritud plasma kihi – ionosfääri. Ionosfäär asub homosfääri ülemisest piirist kuni 400-500 kilomeetri kõrguseni, sellel on omadus peegeldada raadiolaineid, mis võimaldab meil raadiosidet pidada.

Üle 800 kilomeetri hakkavad kergete atmosfäärigaaside molekulid kosmosesse pääsema ja seda atmosfäärikihti nimetatakse eksosfääriks.

Atmosfääri kihid ja osoonisisaldus

Maksimaalne osooni kogus ( keemiline valem O3) leidub atmosfääris 20–25 kilomeetri kõrgusel. See on tingitud suurest hapnikuhulgast õhus ja kõva päikesekiirguse olemasolust. Neid atmosfääri kihte nimetatakse osonosfääriks. Allpool osonosfääri osoonisisaldus atmosfääris väheneb.

Seotud väljaanded