Какие частицы называют катионами анионами. · Улучшается питание в органах и тканях

Катионы и анионы выполняют в организме важные функции, например:

Ответственны за осмоляльность жидкости тела,

Образуют биоэлектрический мембранный потенциал,

Катализируют процесс обмена веществ,

Определяют действительную реакцию (рН) жидкости тела,

Стабилизируют определенные ткани (костную ткань),

Служат в качестве энергетического депо (фосфаты),

Участвуют в свертывающей системе крови.

В организме человека массой 70 кг содержится приблизительно 100 г натрия (60 мэкв/кг), 67% его активно обменивается (Geigy). Половина натрия организма находится во внеклеточном пространстве. Треть располагается в костях и хрящах. Содержание натрия в клетках мало (см. также рис. 6).

Концентрация в плазме: 142(137-147) мэкв/л

Основная роль

Основная ответственность за осмоляльность внеклеточного пространства. 92% всех катионов и 46% всех внеклеточных осмотически активных частиц составляют ионы натрия.

Концентрация натрия может определять осмоляльность плазмы, за исключением таких патологических процессов, как сахарный диабет, уремия (см. 1.1.2).

Величина внеклеточного пространства зависит от содержания натрия.

При бессолевых диетах или применении салуретиков внеклеточное пространство уменьшается; оно увеличивается при усиленном введении натрия.

Влияние на внутриклеточное пространство через содержание натрия в плазме. При повышении внеклеточной осмоляльности, например при введении гипертонического раствора поваренной соли, вода выводится из клеток, при снижении осмоляльности плазмы, например при потере соли, клетки обводняются.

Участие в создании биоэлектрического мембранного потенциала. Калий

В организме человека массой 70 кг содержится приблизительно 150 г калия (54 мэкв/кг), 90% его активно участвует в обмене (Geigy); 98% калия организма находится в клетках и 2% - внеклеточно (Fleischer, Frohlich). В мускулатуре определяется 70% общего содержания калия (Black).

Концентрация калия не во всех клетках одинакова. Мышечные клетки содержат 160 мэкв калия/кг воды (Geigy), эритроциты располагают только 87 мэкв/кг эритроцитной массы (Burck, 1970).

Концентрация калия в плазме: 4,5 (3,8-4,7) мэкв 1 л.

Основная роль

Участвует в утилизации углеводов;

Необходим для синтеза белков; при расщеплении белков калий

освобождается; при синтезе связывается (соотношение: 1 г азота приблизительно на 3 мэкв калия);

Оказывает важное влияние на нервно-мышечное возбуждение.

Каждая клетка мышц и нервное волокно в состоянии покоя представляют собой калиевую батарею, заряд которой в значительной степени определяется соотношением концентраций калия внутри и вне клеток. Процесс возбуждения связан с активным включением внеклеточных ионов натрия во внутренние волокна и медленным выходам внутриклеточного калия из волокон.

Препараты обусловливают вывод внутриклеточного калия. Состояния, связанные с низким содержанием калия, сопровождаются выраженным действием препаратов дигиталиса. При хроническом недостатке калия нарушается тубулярная реабсорбция (Nizet).

Калий участвует в деятельности мышц, сердца, нервной системы, почек, каждой клетки.

Особенности

Большой практический интерес представляет собой взаимосвязь между концентрацией калия в плазме и содержанием калия внутри клетки. Существует принцип, что при уравновешенном обмене веществ содержание калия в плазме определяет его общее содержание во всем организме. На это соотношение влияют:

Значение рН внеклеточной жидкости,

Энергия обмена веществ в клетке,

Функция почек.

Влияние значения рН на концентрацию калия в плазме

При нормальном содержании калия в организме снижение рН увеличивает количество калия в плазме, (повышение рН - уменьшает. Пример: рН 7,3, ацидемия - концентрация калия в плазме 4,8 мэкв/л рН 7,4, норма - концентрация калия в плазме 4,5 мэкв/л рН 7,5, алкалиемия-концентрация калия в плазме 4,2 мэкв/л (Значения рассчитаны по данным Siggaard- Andersen, 1965.) Ацидемии соответствует небольшое по сравнению с нормой повышение концентрации калия в плазме. Иначе говоря, значение 4,5 мэкв/л плазмы указывает при ацидемии на внутриклеточный дефицит калия. Наоборот, при алкалиемии в случае нормального содержания калия нужно ожидать пониженного содержания его в плазме. Зная кислотно-щелочное состояние, можно лучше оценить количество калия в плазме:

Ацидемия →[К]плазма - повышение Алкалиемия→ [К]плазма - снижение

Эти зависимости, выявленные в эксперименте, не всегда клинически доказуемы, так как одновременно развиваются: дальнейшие процессы, влияющие на количество калия в плазме, вследствие чего нивелируется воздействие одного процесса (Heine, Quoss, Guttler).

Влияние энергии обмена веществ клетки на концентрацию калия в плазме

Усиленный отток клеточного калия во внеклеточное пространство происходит, например, при:

Недостаточном снабжении тканей кислородом (шок),

Усиленном разрушении белков (катаболическое состояние).

Сниженной утилизации углеводов (диабет),

Клеточной дегидратации.

Интенсивный приток калия в клетки наблюдается, например, при:

Улучшенной утилизации глюкозы под действием инсулина,

Усиленном синтезе белков (рост, введение анаболических стероидов, репарационная фаза после операции, травма),

Клеточной регидратации.

Разрушающие процессы →[К]плазмы - повышение Восстанавливающие процессы →[К]плазмы - снижение

Ионы натрия, введенные в большом количестве, повышают обмен клеточного калия и способствуют повышенному выведению калия через почки (особенно если ионы натрия связаны не с ионами хлора, а с легко метаболизируемыми анионами, например цитратом). Концентрация калия в плазме вследствие излишка натрия снижается в результате увеличения внеклеточного пространства. Снижение натрия ведет к уменьшению внеклеточного пространства и повышению концентрации калия в плазме:

Излишек натрия→ [К] плазма - снижение Недостаток натрия→[К] плазма - повышение

Влияние почек на концентрацию калия в плазме

Почки меньше влияют на сохранение содержания калия, чем натрия. При недостатке калия почки удерживают его вначале с трудом, поэтому потери могут превышать введение. Наоборот, при передозировке калий довольно легко удаляется током мочи. При олигурии и анурии повышается количество калия в плазме.

Олигурия, анурия→ [К] плазма - повышение

Таким образом, внеклеточная (плазменная) концентрацш калия является результатом динамического равновесия между:

Введением;

Способностью клеток к удержанию в зависимости от значения рН и состоянием обмена веществ (анаболизм - катаболизм);

Ренальным выведением калия в зависимости от:

· кислотно-щелочного состояния,

· тока мочи,

· альдостерона;

Внепочечной потерей калия, например, в желудочно-кишечном тракте. Кальций

У взрослого человека массой 70 кг содержится приблизительно 1000- 1500 г кальция -от 50000 до 75000 мэкв (1,4-2% массы тела), 99% кальция находится в костях и зубах (Rapoport).

Концентрация в плазме: 5(4,5-5,5) мэкв/л с небольшими индивидуальными отклонениями (Rapoport).

Кальций в плазме распределен в трех фракциях, а именно 50-60% ионизировано и способно к диффузии, 35-50% связано с белками (не ионизировано и не способно к диффузии), 5-10% связано комплексной связью с органическими кислотами (лимонная кислота) - не ионизировано, но способно к диффузии (Geigy). Между отдельными фракциями кальция существует подвижное равновесие, которое зависит от рН. При ацидозах, например, степень диссоциации, а, следовательно, и количество диссоциированного кальция возрастают (замедляет явления тетании при ацидозе).

Биологически активны только ионы кальция. Точные данные, позволяющие определить состояние обмена кальция, получают только путем измерения количества ионизированного кальция (Pfoedte, Ponsold).

Основная роль

Составная часть костей. Кальций в костях находится в виде нерастворимого структурного минерала, главным образом фосфата кальция (гидроксилапатит).

Влияние на возбудимость нервов и мышц. Ионы кальция посредничают в биоэлектрическом феномене между поверхностью волокон и контрактильными реакциями внутри волокон.

Влияние на проницаемость мембран.

Вклад в свертывающую систему крови.

Особенности

На абсорбцию кальция в кишечнике влияет состав пищи. Так, абсорбции кальция способствуют лимонная кислота и витамин D, а препятствуют органические кислоты, например оксалиновая кислота (шпинат, ревень), фитиновая кислота (хлеб, хлебные злаки), жирные кислоты (болезни желчного пузыря). Оптимальное соотношение кальция и фосфата (1.2.1) способствует абсорбции. В регуляции содержания кальция играют ведущую роль паратгормон, витамин D и кальцитонин.

В организме человека массой 70 кг находится 20-28 г магния (Hanze)-от 1600 до 2300 мэкв. Он определяется преимущественно в скелете (половина общего количества), меньше в почках, печени, щитовидной железе, мышцах и нервной системе (Simon). Магний наряду с калием является важнейшим катионом клеток животных и растений.

Концентрация в плазме: 1,6-2,3 мэкв/л (Hanze).

Приблизительно 55-60% магния плазмы ионизировано, 30% связано с белками и 15% - с комплексными соединениями (Geigy).

Основная роль

Значение для многочисленных процессов, управляемых ферментами

(регенерация клеток, утилизация кислорода и выделение энергии; Simon). Магний важен для гликолиза, различных ступеней цитратного цикла, окислительного фосфорилирования, активации фосфатов, нуклеаз, различных пептидаз (Hanze).

Тормозит перенос нервного возбуждения в конечную точку (подобно кураре; антагонист - ионы кальция), следствием чего является понижение нервно-мышечного возбуждения.

Депрессивное влияние на центральную нервную систему.

Уменьшение сократительной способности гладкой мускулатуры и миокарда.

Подавление возбуждения в синусовом узле и нарушение атриовентрикулярной проводимости (при очень высоких дозах остановка сердца в диастоле).

Расширение сосудов.

Содействие фибринолизу (Hackethal, Bierstedt).

Особенности

Наряду с абсорбцией и выделением через почки в регуляции содержания магния в организме участвует еще не до конца изученный гормон поджелудочной железы. Дефицит магния приводит к выведению ионов магния и кальция из костей. Абсорбцию понижает пища, богатая белками и кальцием, а также алкоголь (Simon).

В организме человека массой 70 кг содержится приблизительно 100 г хлора - 2800 мэкв (Rapoport). Концентрация в плазме: 103 (97-108) мэкв/л

Основная роль

Хлор - важнейшая часть анионов плазмы.

Ионы хлора участвуют в образовании мембранного потенциала.

Гидрокарбонат

Гидрокарбонат относится к изменяемой части ионов. Изменения в содержании анионов уравновешиваются благодаря гидрокарбонату. Система гидрокарбонат - угольная кислота является важнейшей внеклеточной буферной системой. Значение рН внеклеточного пространства можно рассчитать по отношению гидрокарбоната к угольной кислоте (дальнейшее рассуждение см. 1.3).

В теле взрослого человека содержится 500-800 г фосфата (1% массы тела). 88% находятся в скелете (Grossmann), остальная часть располагается внутриклеточно и лишь небольшая его часть - во внеклеточном пространстве (Rapoport).

Фосфат может быть как органическим (в качестве составной части фосфопротеинов, нуклеиновых кислот, фосфатидов, коферментов - Rapoport), так и неорганическим. Приблизительно 12% фосфатов плазмы связано с белками .

Концентрация в плазме (неорганический фосфор): 1,4- 2,6мэкв/л.

Основная роль

Вместе с кальцием образует нерастворимый гидроксилапатит (опорная функция костей).

Участие в метаболизме углеводов, а также в хранении и переносе энергии (АТФ, креатинфосфат).

Буферное действие.

Особенности

Фосфор находится во всех продуктах питания. Абсорбция стимулируется витамином D и цитратом, задерживается некоторыми металлами (например, алюминием), цианидами, а также повышенным введением кальция. Фосфаты, выделяемые мочой, действуют в качестве буфера.

Концентрация в плазме (неорганического сульфата) :0,65 мэкв/л

Сульфат образуется из серосодержащих аминокислот (например, цистеин, метионин) и выводится через почки.

При почечной недостаточности концентрация сульфатов в плазме повышается в 15-20 раз.

Органические кислотные радикалы

Лактат (молочная кислота).

Пируват (пировиноградная кислота).

Бета-гидроксибутират (бета-гидроксимасляная кислота).

Ацетоацетат (ацетоуксусная кислота).

Сукцинат (янтарная кислота).

Цитрат (лимонная кислота).

Концентрация в плазме: 6 мэкв/л (Geigy)

Молочная кислота является промежуточным продуктом в процессе обмена углеводов. При снижении уровня кислорода (шок, сердечная недостаточность) концентрация молочной кислоты повышается.

Ацетоуксусная кислота и бета-гидроксимасляная кислота (кетоновые тела) появляются при снижении количества углеводов (голод, пост), а также при нарушении утилизации углеводов (диабет) (см. 3.10.3).

Молекулы белков при рН крови 7,4 существуют главным образом в виде анионов (16 мэкв/л плазмы).

Основная роль

Жизнь связана с белками, отсюда без белков нет жизни Белки

Являются основной составной частью клеточных и межтканевых структур;

Ускоряют в качестве ферментов процессы обмена веществ;

Образуют межклеточное вещество кожи, костей и хрящей;

Обеспечивают деятельность мускулатуры благодаря контрактильным свойствам определенных белков;

Определяют коллоидно-осмотическое давление и тем самым водозадерживающую способность плазмы (1 г альбумина связывает 16 г воды);

Являются защитными веществами (антитела) и гормонами (например, инсулин);

Транспортируют вещества (кислород, жирные кислоты, гормоны, лекарственные вещества и др.);

Действуют в качестве буфера;

Участвуют в свертывании крови.

Это перечисление уже показывает основополагающее значение белков.

Особую нагрузку испытывает белковый баланс в состоянии стресса (см. также 3.8.2.1).

Указания для клинициста

Определяя состояние белков, обычно привлекают следующие параметры:

Клиническую оценку состояния пациента (похудание и пр.);

Концентрацию общего белка и альбумина в плазме;

Концентрацию трансферрина;

Состояние иммунитета (например, кожный тест, исследование с помощью БЦЖ и др., определение числа лимфоцитов и др.).

Чувствительный показатель состояния белкового питания, каковым является концентрация альбумина в плазме, представляет величину зкстраваскулярного запаса альбумина, измеряемого с помощью меченого альбумина. Экстраваскулярный, межтканевый альбумин можно рассматривать как белковый резерв. Он повышается при отличном питании и снижается при дефиците белков без изменения концентрации альбумина в плазме (Kudlicka и соавт.).

Внутрисосудистый запас альбумина составляет 120 г, межтканевый - от 60 до 400 г, у взрослых в среднем 200 г. При падении концентрации альбумина в плазме ниже предельной границы нормы значительно истощаются в первую очередь межтканевые запасы альбумина (Kudlicka, Kudlickova), что видно из табл. 2 и 3. У 46 больных, оперированных по поводу хронических гастродуоденальных язв, Studley установил корреляцию послеоперационной летальности с предоперационным похуданием (см. табл.3).

Таблица 2

Летальность в зависимости от концентрации сывороточного альбумина на клиническом материале терапевтических больных (Wuhmann, Marki)

АНИОН — это отрицательно заряженная частица кислорода. Анион- это не искусственно выращенная частица в лабораторных условиях.

Анион, как ни странно присутствует в воздухе,и здоровье на прямую зависит от их количества. Анионы могут аккумулировать и нейтра лизовать пыль, уничтожать вирусы с положительно заряженными электронами, проникать в клетки бактерий и уничтожать их, пред отвращая таким образом негативные последствия для человеческо го организма. При ионизации человека отмечаются улучшения в ра боте всех органов и систем организма:

Сердечно сосудистой системы, нормализация артериального давления, центральной нервной системы, желудочно-кишечного тракта, мочеполовой системы и отмечается общее омоложение организма.

Особо большое скопление анионов присутствует в морском и горном воздухе. Наверняка Вы наблюдали, что возле моря Вам дышится легче и улучшается самочувствие. А про долгожителей горных поселений ходят легенды.

Каким образом анионы присутствуют в женских гигиенических прокладках? – спросите Вы?

В природе есть такой минерал — ТУРМАЛИН.

А это уже отшлифованные камни


Турмалин при определённых условиях (1.трение, 2.влага, 3.темпера тура) излучает анионы. Все три условия присущи человеческому ор ганизму.

Как лекари, турмалины положительно влияют на нервную систему, сон, эндокринную и иммунную системы. Уникальный минерал тур малин хорошо лечит кровеносную систему, воспроизводительную функцию организма.

Минерал нейтрализует отрицательные эмоции. Из всех зелёных камней турмалин имеет самые сильные омолаживающие качества.

Как камень нижних энергий прекрасно подходит как средство от половых расстройств, бессилия и пр. У мужчин укрепляет потенцию. Для низменных людей он может оказаться афродозиаком, сделав сексуальную энергию неуправляемой.

Очень любопытно, что турмалин считается сильным лечебным средством при онкологических заболеваниях. По некоторым данным, турмалины могут быть индикаторами радиоактивности, а кровь

онкологических больных обнаруживает очень специфическое излуче ние. При лечении турмалин кладут между чакрами для проводки энергии от одной чакры к другой. Особенно хорошо применять его с родохрозитом и малахитом на солнечное сплетение для объединения энергий.

Из всех существующих на земле минералов только турмалин несёт в себе постоянный электрический заряд, за что его и называют крис таллическим магнитом.

При нагревании турмалин создаёт низкочастотное магнитное поле, излучает анионы, которые действуют на человеческий организм следующим образом:

· Усиливается клеточный метаболизм, улучшается обмен веществ;

· Улучшается местный кровоток;

· Восстанавливается работа лимфатической системы;

· Восстанавливаются эндокринная и гормональная системы;

· Улучшается питание в органах и тканях;

· Укрепляется иммунитет;

· Содействуют уравновешенности вегетативной системы(это система возбуждения и торможения психики);

· Обеспечениие организма живительной энергией;

· Улучшается качество крови, стимулируются кровообращение и разжижение крови,так что она поступает в тончайшие капилляры, придавая организму жизненных сил. Очищает сосуды, заряжает плазму.

· Применяются при болезнях печени;

· Улучшают сон;

· Восстанавливают нервы после стрессовых ситуаций;

· Улучшают цвет лица;

· Укрепляют потенцию и половую функцию организма;

· Улучшают зрение и память;

· Облегчают головные боли, снимают головокружение;

· Устраняют неприятные запахи, имеют антибактериальные свойства.

В проточной воде можно снять лишний заряд с камня. Для того, чтобы снова его зарядить – нужно немного подержать на солнце. Являясь природным минералом, турмалин не даёт побочных явлений.

Компания «ВИНАЛАЙТ», используя инновационные нанотехнологии, нашла способ обработки и измельчение турмалина, переплетая с волокнами хлопка. Таким образом создан анионовый вкладыш или чип (не электронный), который помещён в женскую гинекологическую прокладку «Love Moon».

Количество концентрации анионов в 1 см 3:


Возле водопадов 7000 — 8000 анионов


Возле моря 3000 — 6000 анионов


В горах 3000 — 5000 анионов


В лесах 700 — 1500 анионов


В городах 100 -200 анионов


В квартирах 25 -75 анионов


В анионовом вкладыше ~ 5800 анионов на 1 см3.

Человек, так же как и всякое другое живое существо, не может жить без анионов. А между тем, знаете ли Вы, что такое «анион»?В обычных условиях молекулы и атомы воздуха нейтральны. Однако при ионизации, которая может происходить посредством обычного излучения, ультрафиолетовой радиации, микроволновой радиации или же посредством простого удара молнии, молекулы воздуха теряют часть вращающихся вокруг атомного ядра отрицательно заряженных электронов, которые в дальнейшем присоединяются к нейтральным молекулам, придавая им отрицательный заряд. Такие молекулы мы и называем анионами.

У анионов нет цвета и запаха, а наличие отрицательных электронов на орбите позволяет им притягивать из воздуха различные микровещества. Анионы также удаляют из воздуха пыль и убивают микробы. Связь «анион-воздух» аналогична связи «витамин-пища». Именно поэтому анионы также называют «воздушными витаминами», «элементом долголетия» и «очистителем воздуха». Хотя полезные свойства анионов оставались долгое время в тени, они крайне важны для человеческого здоровья. Мы не можем позволить себе пренебрегать их целебными свойствами. Так, анионы могут аккумулировать и нейтрализовать пыль, уничтожать вирусы с положительно заряженными электронами, проникать в клетки микробов и уничтожать их, предотвращая, таким образом, негативные последствия для человеческого организма. Чем больше в воздухе анионов, тем меньше в нем микробов (когда же концентрация анионов достигает определенного уровня, то содержание микробов и вовсе сводится к нулю). Здоровье людей напрямую зависит от содержания анионов в воздухе. Если в попадающем в человеческое тело воздухе содержание анионов слишком низкое или, наоборот, слишком высокое, то человек начинает судорожно дышать, может почувствовать усталость, головокружение, головную боль или даже впасть в депрессию.

Все это поддается лечению при условии, что содержание анионов в поступающем в легкие воздухе составляет 1200 анионов на 1 кубический сантиметр. Если содержание анионов внутри жилых помещений повысить до 1500 анионов на 1 кубический сантиметр, то Ваше самочувствие сразу улучшится; Вы начнете работать с удвоенной энергией, повышая тем самым производительность труда.

Таким образом, анионы – это незаменимый помощник в укреплении человеческого здоровья и продлении жизни. Международная Организация Здравоохранения установила, что минимальное содержание анионов в свежем воздухе должно составлять 1000 анионов на 1 кубический сантиметр. При определенных условиях состояния окружающей среды (например, в горных областях) люди за всю жизнь могут ни разу не испытать воспаление внутренних органов. Как правило, такие люди живут долго и остаются здоровыми всю жизнь, что является результатом достаточного содержания анионов в воздухе.

Классификация катионов и анионов.

Методы анализа.

Аналитическая химия – наука об определении химического состава вещества.

Аналитическая химия и ее методы широко применяются на предприятиях общественного питания и пищевой промышленности для осуществления контроля качества сырья, полуфабрикатов, готовой продукции; определения сроков реализации и условий хранения продукции.

В аналитической химии различают количественный и качественный анализ. Задача количественного анализа - определение относительного количества элементов в соединениях или химических соединений в смесях; задача качественного анализа - обнаружить присутствие элементов в соединениях или химических соединений в смесях.

История развития аналитической химии.

Изначально с помощью качественного анализа определяли свойства некоторых минералов. Количественный анализ применялся в пробирном деле (определение благородных металлов) - Древняя Греция, Египет. В 9-10веке методы пробирного дела применялись для определения благородных металлов в Киевской Руси.

Аналитическая химия как наука начинает развиваться с середины 17 века.

Впервые основы качественного анализа изложил английский ученый Р.Бойль, он же ввел термин «химический анализ». Р.Бойль считается родоначальником научной аналитической химии.

Законы количественного анализа изложил Ломоносов в середине 17 века. Ломоносов впервые начал применять взвешивание исходных веществ и продуктов реакции.

К середине ХIХ века оформились титриметрические и гравиметрические методы анализа, методы газового анализа.

Первый учебник по аналитической химии появился в России в 1871 г. Автор этого учебника – русский химик Н.А. Меншуткин.

Во второй половине ХХ века появилось много новых методов анализа: рентгеновские, масс-спектральные и т.д.

Классификация методов анализа, применяемых в аналитической химии.

Аналитическая химия включает два основных раздела: количественный анализ и качественный анализ.

Методы качественного анализа:

Ø Химические

Ø Физико-химические

Ø Физические

Химический анализ:

Ø «сухим» путем

Ø «мокрым» путем

«Сухой» путь – химические реакции, которые идут при накаливании, сплавлении, окрашивании пламени.

Пример : окрашивание пламени катионами металлов (натрий – желтый, калий – розово-фиолетовый, кальций – оранжево-красный, медь – зеленый и т.д.), которые образуются при электролитической диссоциации солей:

NaCl → Na + + Cl -

K 2 CO 3 → 2K + + CO 3 2-

«Мокрый» путь – химические реакции в растворах электролитов.

Также в качественном анализе в зависимости от количества исследуемого вещества, объема раствора, техники выполнения различают:

1) макрометод: сравнительно большие навески (0,1 г и более) или большие объемы растворов (10 мл и более) исследуемого вещества. Этот метод наиболее удобен в определении.

2) микрометод: навески от 10 до 50 мг и объемы раствора до нескольких мл.

3) полумикрометод: навески 1-10 мг и объемы раствора около 0,1 – 1 мл.

Микрометод и полумикрометод обладают двумя несомненными достоинствами:

1. Большая скорость выполнения анализа

2. Небольшое требуемое количество анализируемого вещества.

Физико-химические методы анализа:

Ø колориметрические (сравнение окраски двух растворов)

Ø нефелометрические (помутнение исследуемого раствора от действия каких-то реагентов)

Ø электрохимические (момент окончания реакции определяют по изменению электропроводности раствора, потенциала электродов в исследуемом растворе)

Ø рефрактометрические (определяют показатель преломления)

Физические методы анализа:

Ø спектральный анализ (изучение спектров излучения или поглощения)

Ø люминесцентный (изучение характера свечения вещества под действием УФ)

Ø масс-спектрометрический

Ø рефрактометрический

Для обнаружения ионов в растворах в аналитической химии используют аналитические реакции.

Аналитическая реакция – химическое превращение, при котором исследуемое вещество переводят в новое соединение с характерным признаком.

Признаки аналитической реакции:

Ø Выпадение осадка

Ø Растворение осадка

Ø Изменение цвета

Ø Выделение газообразного вещества

Условия аналитической реакции:

Ø Быстрое протекание

Ø Специфичность

Ø Чувствительность

Чувствительная реакция – реакция, при помощи которой можно обнаружить наименьшее количество вещества из наименьшего количества раствора.

Чувствительная реакция характеризуется:

1. Открываемым минимумом (наименьшее количество вещества, которое может быть обнаружено данной реакцией)

2. Минимальной концентрацией (отношение массы определяемого вещества к массе или объему растворителя).

Специфичной называется реакция, при помощи которой можно открыть ион в присутствии других ионов по специфичному изменению цвета, образованию характерного осадка, выделению газа и т.д.

Пример: ион бария обнаруживают хроматом калия К 2 СгО 4 (выпадает ярко-желтый осадок).

На специфичных реакциях основан анализ, называемый дробным . С помощью дробного анализа можно открывать ионы в любой последовательности, используя специфичные реакции.

Однако специфичных реакций известно мало, чаще реактивы взаимодействуют с несколькими ионами. Такие реакции и реактивы называются общими . В этом случае применяют систематический анализ. Систематический анализ - определенная последовательность обнаружения ионов, находящихся в смеси. Ионы, составляющие смесь, разделяют на отдельные группы, из этих групп каждый ион выделяют в строго определенной последовательности, а затем открывают этот ион наиболее характерной реакцией. Реакции, характерные для одного иона, называются частными .

Классификация катионов и анионов.

В основу классификации ионов в аналитической химии положено различие в растворимости образуемых ими солей и гидроксидов.

Аналитическая группа – группа катионов или анионов, которая с каким-то одним реактивом дает сходные аналитические реакции.

Классификации катионов:

Ø сульфидная, или сероводородная,– является классической, разработал Меншуткин Н.А.;

Ø кислотно-основная и т.д.

Сульфидная классификации катионов основана на отношении катионов к сульфид-иону:

1) Катионы, осаждаемые сульфид-ионом

2) Катионы, не осаждаемые сульфид-ионом.

Каждая группа имеет свойгрупповой реактив – реактив, используемый для открытия одной группы ионов и образующий осадок с ионами данной группы (Ва 2+ + SО 4 2- → ВаSО 4 ↓)

Определение катионов проводят систематическим анализом .

Электроли́т - вещество , которое проводит электрический ток вследствие диссоциации на ионы , что происходит врастворах и расплавах , или движения ионов в кристаллических решётках твёрдых электролитов . Примерами электролитов могут служить водные растворы кислот , солей и оснований и некоторые кристаллы (например, иодид серебра , диоксид циркония ). Электролиты - проводники второго рода, вещества, электропроводность которых обусловлена подвижностью ионов.

Исходя из степени диссоциации все электролиты делятся на две группы

Сильные электролиты - электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO 3, H 2 SO 4).

Слабые электролиты - степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относятводу, ряд кислот (слабые кислоты, такие как HF), основанияp-, d-, и f-элементов.

Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом - слабого.

Изотонический коэффициент (также фактор Вант-Гоффа ; обозначается i ) - безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы.

Основные положения теории электролитической диссоциации

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.

3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).

4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).

Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений:

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например,

HCl → H + + Cl - ; CH 3 COOH H + + CH 3 COO - .

Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO 3 – одноосновные кислоты, H 2 SO 4 , H 2 CO 3 – двухосновные, H 3 PO 4 , H 3 AsO 4 – трехосновные.

Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,

KOH → K + + OH - , NH 4 OH NH 4 + + OH - .

Растворимые в воде основания называются щелочами.

Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH) 2 – двухкислотное, Sn(OH) 4 – четырехкислотное и т.д.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH 4 +) и анионы кислотных остатков. Например,

CaCl 2 → Ca 2+ + 2Cl - , NaF → Na + + F - .

Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,

H 2 O H + + OH - , Zn(OH) 2 Zn 2+ + 2OH - , Zn(OH) 2 2H + + ZnO 2 2- или Zn(OH) 2 + 2H 2 O 2- + 2H + .

Катио́н - положительно заряженный ион . Характеризуется величиной положительного электрического заряда: например, NH 4 + - однозарядный катион, Ca 2+

Двузарядный катион. В электрическом поле катионы перемещаются к отрицательному электроду - катод

Происходит от греческого καθιών «нисходящий, идущий вниз». Термин введен Майклом Фарадеем в 1834 году .

Анио́н - атом , или молекула , электрический заряд которой отрицателен, что обусловлено избытком электронов по сравнению с количеством положительныхэлементарных зарядов . Таким образом, анион - отрицательно заряженный ион . Заряд аниона дискретен и выражается в единицах элементарного отрицательного электрического заряда; например, Cl − - однозарядный анион, а остаток серной кислоты SO 4 2− - двузарядный анион. Анионы имеются в растворах большинствасолей , кислот и оснований , в газах , например, H − , а также в кристаллических решётках соединений с ионной связью , например, в кристаллах поваренной соли , вионных жидкостях и в расплавах многих неорганических веществ .

В волшебном мире химии возможно любое превращение. Например, можно получить безопасное вещество, которым часто пользуются в быту, из нескольких опасных. Подобное взаимодействие элементов, в результате которого получается однородная система, в которой все вещества, вступающие в реакцию, распадаются на молекулы, атомы и ионы, называется растворимость. Для того чтобы разобраться с механизмом взаимодействия веществ, стоит обратить внимание на таблицу растворимости .

Таблица, в которой показана степень растворимости, является одним из пособий для изучения химии. Те, кто постигают науку, не всегда могут запомнить, как определённые вещества растворяются, поэтому под рукой всегда следует иметь таблицу.

Она помогает при решении химических уравнений, где участвуют ионные реакции. Если результатом будет получение нерастворимого вещества, то реакция возможна. Существует несколько вариантов:

  • Вещество хорошо растворяется;
  • Малорастворимо;
  • Практически не растворяется;
  • Нерастворимо;
  • Гидрализуется и не существует в контакте с водой;
  • Не существует.

Электролиты

Это растворы или сплавы, проводящие электрический ток. Электропроводность их объясняется мобильностью ионов. Электролиты можно поделить на 2 группы :

  1. Сильные. Растворяются полностью, независимо от степени концентрации раствора.
  2. Слабые. Диссоциация проходит частично, зависит от концентрации. Уменьшается при большой концентрации.

Во время растворения электролиты диссоциируют на имеющие разный заряд ионы: положительные и отрицательные. При воздействии тока положительные ионы направляются в сторону катода, тогда как отрицательные в сторону анода. Катод – положительный заряд, анод – отрицательный. В итоге происходит движение ионов.

Одновременно с диссоциацией проходит противоположный процесс – соединение ионов в молекулы. Кислоты – это такие электролиты, при распаде которых образуется катион – ион водорода. Основания – анионы – это гидроксид ионы. Щелочи – это основания, которые растворяются в воде. Электролиты, которые способны образовывать и катионы и анионы, называются амфотерными.

Ионы

Это такая частица, в которой больше протонов или электронов, он будет называться анион или катион, в зависимости от того, чего больше: протонов или электронов. В качестве самостоятельных частиц они встречаются во многих агрегатных состояниях: газах, жидкостях, кристаллах и в плазме. Понятие и название ввёл в обиход Майкл Фарадей в 1834 году. Он изучал воздействие электричества на растворы кислот, щелочей и солей.

Простые ионы несут на себе ядро и электроны. Ядро составляет почти всю атомную массу и состоит из протонов и нейтронов. Количество протонов совпадает с порядковым номером атома в периодической системе и зарядом ядра. Ион не имеет определённых границ из-за волнового движения электронов, поэтому невозможно измерить их размеры.

Отрыв электрона от атома требует, в свою очередь, затрат энергии. Она называется энергия ионизации. Когда присоединяется электрон, происходит выделение энергии.

Катионы

Это частицы, носящие положительный заряд. Могут иметь разную величину заряда, например: Са2+ – двузарядный катион, Na+ – однозарядный катион. Мигрируют к отрицательному катоду в электрическом поле.

Анионы

Это элементы, имеющие отрицательный заряд. А также обладает различным количеством величины зарядов, например, CL- – однозарядный ион, SO42- – двухзарядный ион. Такие элементы входят в состав веществ, обладающих ионной кристаллической решёткой, в поваренной соли и многих органических соединениях.

  • Натр​ий . Щелочной металл. Отдав один электрон, находящийся на внешнем энергетическом уровне, атом превратится в положительный катион.
  • Хлор . Атом этого элемента принимает на последний энергетический уровень один электрон, он превратится в отрицательный хлорид анион.
  • Поваренная соль . Атом натрия отдаёт электрон хлору, вследствие этого в кристаллической решётке катион натрия окружён шестью анионами хлора и наоборот. В результате такой реакции образуется катион натрия и анион хлора. Благодаря взаимному притяжению формируется хлорид натрия. Между ними образуется прочная ионная связь. Соли – это кристаллические соединения с ионной связью.
  • Кислотный остаток . Это отрицательно заряженный ион, находящийся в сложном неорганическом соединении. Он встречается в формулах кислот и солей, стоит обычно после катиона. Практически для всех таких остатков есть своя кислота, например, SO4 – от серной кислоты. Кислот некоторых остатков не существует, и их записывают формально, но они образуют соли: фосфит ион.

Химия – наука, где возможно творить практически любые чудеса.

Похожие публикации