Волновые приливные электростанции. Приливные и волновые электростанции

Первую приливную электростанцию построили в 1913 г. вблизи Ливерпуля в бухте Ди, ее мощность достигала 635 кВт.

Для работы электростанции необходимо, чтобы перепад уровней между отливом и приливом составлял более четырех метров.

С увеличением разницы высот воды увеличивается выработка электроэнергии приливной электростанции. Наиболее подходящим местом для использования энергии приливов необходимо считать такое место на морском побережье, где приливы обычно имеют амплитуду от 4 до 19 м, а береговой рельеф позволяет с минимальными затратами создать большой замкнутый бассейн.

Удобным местом для постройки приливной электростанции является узкий морской залив, который при устройстве ПЭС отсекается плотиной от океана. В отверстиях плотины размещаются гидротурбины с генераторами. Генератор и турбина заключены в обтекаемую капсулу. Главным достоинством таких капсульных агрегатов является их универсальность. Они способны не только вырабатывать электрическую энергию при движении через них морской воды, но и выполнять функции насосов. При этом производство электроэнергии происходит как в период прилива, так и в период отлива.

Режим работы приливной электростанции обычно состоит из нескольких циклов. Четыре переходных цикла (периода): простой турбин, по 1-2 часа, периоды начала прилива и его окончания. Затем четыре рабочих цикла продолжительностью по 4-5 часов, периоды прилива или отлива, действующих в полную силу. В ходе прилива водой наполняется бассейн приливной электростанции. Движение воды вращает колеса капсульных агрегатов, электростанция вырабатывает ток. Во время отлива вода, уходя из бассейна в океан, также вращает рабочие колеса, но в обратную сторону. В промежутках между приливом и отливом колеса останавливаются. Приливную электростанцию необходимо связать с сетью.

В России первая приливная станция была построена в заливе Кислая Губа в 90 км от Мурманска в 1968 г., мощность турбины 400 кВт. Впервые при ее монтаже была применена наплавная технология строительства, когда блоки делают в доке, затем перемещают плавучим способом к месту установки, монтируют и бетонируют. Такая же технология впоследствии была использована при строительстве дамбы в Санкт-Петербурге. В настоящее время на станции установлен агрегат нового типа.

В России после выполнения проектных проработок определены несколько основных мест возможного размещения приливных электростанций в Северном море: Мезенская ПЭС – 8 ГВт, Северное море, около 10 м прилив; Северная ПЭС – 12 ГВт, Баренцево море, высота прилива около 4 м; Пенжинская ПЭС – 88 ГВт, Охотское море, высота прилива 11 м; Тугурская ПЭС – 8 ГВт, Охотское море, высота прилива 9 м. Положение ПЭС на карте .

Следует помнить, что общая мощность тепловых электростанций в России на сегодня составляет около 150 ГВт. В связи с дальним расположением потребителей электроэнергии рассматривается вариант производства рядом с ПЭС водорода с последующей его транспортировкой потребителям. Ведутся переговоры с Россией о строительстве международной ПЭС на востоке России. Энергия ПЭС самая дешевая.

Для применения на ПЭС в России разработаны простые в изготовлении и потому дешевые ортогональные роторные турбины, состоящие из нескольких ярусов и имеющие к.п.д. на уровне 70…80%. У них есть ряд преимуществ перед осевыми машинами, хотя их к.п.д. несколько меньше.

Самой мощной на сегодня является Сихвинская ПЭС мощность 252 МВт (Южная Корея), введенная в работу в 2013 г.

Волновые электростанции

Применяются также волновые электростанции. Конструктивных реализаций волновых электростанций, как минимум, несколько десятков. В настоящем разделе приведены три довольно оригинальных конструкции.

Oceanlinx – электростанция, в которой рабочим телом является воздух. Еще одно название — Oscillating Water Column (OWC). Осевая турбина производства фирмы Denniss-Auld turbine расположена горизонтально в надземной части платформы. Канал, в котором она размещена, имеет переменное сечение и переходит в подводный канал. Переменный уровень поверхности волн приводит то к выталкиванию воздуха из проточной части турбины при подъеме волны, то к втягиванию атмосферного воздуха при понижении ее уровня относительно среднего уровня воды. Скорость воздуха максимальна в окрестности рабочего колеса турбины. Эти переменные по направлению потоки воздуха и вызывают вращение колеса турбины. Несмотря на противоположные направления движения воздуха, турбина вращает генератор в одном направлении. Это достигается с помощью механизма поворота лопаток при смене направления движения воздуха. С помощью контроллера производится переменное во времени регулирование угла положения лопаток относительно оси турбины, исходя из направления движения воздуха и его скорости, которая, в свою очередь зависит от высоты волны на поверхности моря. Достигнута мощность 2,5 МВт в одном агрегате, намериваются сделать 6-модульный агрегат общей мощностью 18 МВт. Движение воздуха сопровождаются звуками, которые называют “Дыханием дракона”.

Searaser, Wave Energy Converter – гравитационно-волновой насос (другие названия “морской наполнитель”, преобразователь энергии волн) – это поплавковый поршневой насос двустороннего действия, производящий закачивание морской воды в бассейн (емкость), расположенный выше уровня моря на 100…200 м. Мощность одного модуля может достигать 250 кВт. Из верхнего бассейна вода направляется в гидротурбинный агрегат, расположенный на берегу моря и производящий электроэнергию. Насос по принципу действия похож на велосипедный насос. Движущей силой поршня является результирующая сил Архимеда и силы тяготения, действующая на перемещающийся по вертикали верхний поплавок с внутренним грузом благодаря энергии волн, смотри на русском языке и . Фактически эта установка является гидроаккумулятором, использующим энергию волн для заполнения высоко расположенной аккумулирующей емкости, башни или бассейна.

В Северной Ирландии установлен двухроторный агрегат SeaGen мощностью 1,2 МВт с лопастями диаметром 10 м, см. фото.

В наши дни основными источниками энергии являются углеводороды – нефть, уголь, газ. Согласно прогнозам аналитиков запасов угля при современных уровнях добычи хватит на 400 лет, а запасы нефти и газа закончатся через 40 и 60 лет соответственно. Такое стремительное уменьшение объема природных богатств ставит задачу поиска альтернативных способов получения энергии.

Одним из перспективных направлений является волновая энергетика.

Общее устройство волновых станций

Волновой электростанцией (ВЭС) называют сооружение, расположенное на воде, которое преобразовывает механическую энергию волн в электрическую.

При строительстве ВЭС учитывают два фактора.

  • Кинетическая энергия волн. Волны, поступающие в трубу огромного диаметра, вращают турбинные лопасти, которые приводят в движение генератор. Иногда действует иной принцип: волна, проходя через полую камеру, выталкивает сжатый воздух, заставляя турбину вращаться.
  • Энергия поверхностного качения. В этом случае выработка электроэнергии происходит посредством преобразователей, отслеживающих профиль волны, – так называемых, поплавков, расположенных на поверхности воды.

Здесь используют определенные виды поплавков-преобразователей.

  • «Утка Солтера» – большое количество поплавков, смонтированных на общем валу. Для эффективной работы такого поплавка необходимо установить на валу 20–30 поплавков.
  • Плот Коккереля – сооружение из четырех секций, соединенных шарнирно, которые изгибаются под влиянием волн и приводят в действие гидроцилиндрические установки, способствующие работе генераторов.
  • Преобразователи Pelamis – так называемые морские змеи – соединенные шарнирами цилиндрические секции. Под воздействием волн импровизированная змея изгибается, приводя в движение гидравлические поршни.

Достоинства и недостатки волновой энергетики

На сегодня всего 1 % получаемой электроэнергии приходится на волновые электростанции, хотя потенциал их огромен. Ограниченное использование волновых электростанций связано прежде всего с дороговизной получаемой энергии. Один киловатт электричества, полученный на ВЭС, дороже, чем сгенерированный на ТЭС или АЭС, в несколько раз.

К другим недостаткам использования волновых электростанций можно отнести следующие факторы:

  • Экологические. Покрытие значительной части акватории преобразователями волн может навредить экологии, поскольку волны играют большую роль в газообмене океана и атмосферы, в очищении водной поверхности от загрязнений.
  • Социально-экономические. Некоторые типы генераторов, применяемые в ВЭС, представляют опасность для судоходства. Это может вытеснить рыбаков из крупных рыбопромышленных зон.

Несмотря на вышеперечисленные минусы, в определенных районах земного шара за волновыми электростанциями будущее, и вот почему:

  1. Станции могут выступать в роли волногасителей, защищая тем самым берега гавани, порты, береговые сооружения от разрушений.
  2. Возможна установка волновых электрогенераторов малой мощности на опорах мостов, причалов, уменьшающая воздействие на них.
  3. Удельная мощность ветра на пару порядков ниже мощности волнения, поэтому волновая энергетика более выгодна, нежели ветровая.
  4. Для выработки электрической энергии посредством морских волн не требуется углеводородного сырья, запасы которого стремительно иссякают.
Основной задачей разработчиков волновых электростанций является усовершенствование конструкции станции таким образом, чтобы значительно снизить себестоимость получаемой электроэнергии.

География применения волновых электроэнергетических установок

Использование волновых электростанций незначительных мощностей находит применение в получении электропитания для небольших объектов:

  • береговых сооружений;
  • небольших поселений;
  • автономных маяков, буев;
  • научно-исследовательских приборов;
  • буровых платформ.

Уже около 400 навигационных буев и маяков получают питание от волновых энергоустановок – как, например, плавучий маяк индийского порта Мадрас.

Португалия

Первая в мире крупная волновая электростанция с мощностью 2,25 МВт начала эксплуатироваться в 2008 году в районе португальского местечка Агусадора. Проект установки разработала шотландская компания Pelamis Wave Power, заключившая контракт с португальцами на 8 миллионов евро.

Сейчас на станции функционируют три преобразователя энергии волн – змеевидные устройства, погруженные на одну половину в воду. Длина каждого преобразователя равна 120 метрам, а диаметр – 3,5. Вес так называемой морской змеи составляет 750 тонн. Волны приводят в движение секции преобразователей, а сопротивление гидравлической системы способствует выработке электричества, которое по кабелям передается на сушу (станция базируется в 5 км от берега). В настоящее время ведутся работы по увеличению мощности этой волной станции с 2,25 МВт до 21 МВт: планируется добавить еще 25 преобразователей. В этом случае установка обеспечит электроснабжением 15 тысяч домов.

Норвегия

Опытно-промышленные волновые были впервые введены в строй в 1985 году в Норвегии.

Одна из них, мощностью до 500 кВт, является пневматической волновой установкой, в которой нижняя открытая часть камеры погружена под самый низкий поверхностный слой воды.

Мощность второй составляет 450 кВт. Здесь применяется эффект набегания волны на 147-метровый конфузорный откос (отлогую конусообразную поверхность). Суживающийся канал расположен в фьорде, а турбинный водоприемник возвышается на 3 м над средним уровнем моря. Установка, размещенная на берегу, исключает трудности с ее ремонтом и обслуживанием.

Австралия

Одним из самых успешных проектов в части переработки энергии океанских волн является электростанция турбинного типа Oceanlinx, работающая в акватории австралийского города Порт-Кембл. После реконструкции и переоборудования, начатых в 2005 году, станцию вновь запустили в 2009 году.

Принцип работы Oceanlinx заключается во вращении турбин сжатым воздухом, поступающим из специальной камеры. Конструкция станции громоздка, и благодаря тяжести своего веса она стоит на дне, не нарушая его структуры. Около 1/3 всей конструкции, а это составляет почти 15 метров, выступает над поверхностью воды.

Важным достоинством волновой станции такого типа является производство прогнозируемого количества энергии. Платформы работают вследствие возмущения океанической поверхности, а не самих волн. Это позволяет определить погодные условия, влияющие на количество вырабатываемой энергии, на 5–7 дней вперед. Мощность Oceanlinx составляет 1 МВт, а потребители получают около 450 кВт электричества.

Корректная и эффективная работа города, и особенно коммунального хозяйства зависит от надежной техники. тому пример.

Поломался холодильник и вы его тащите на свалку? Не спешите – прочтите !

У вас много рисовой шелухи, и уже некуда от нее спасаться? Нужный материал по ссылке.

Россия

Применение волновой энергетики в России делает только первые шаги. Совсем недавно волновая электростанция, аналогичная португальской, была в экспериментальном порядке запущена на полуострове Гамова в Приморском крае. Испытания проходили в бухте Витязь на морской экспериментальной станции «Мыс Шульца». Инициаторами этой идеи стали ученые Уральского федерального университета и исследователи Тихоокеанского океанологического института при Дальневосточном отделении Российской Академии Наук.

Испытания показали, что волновая энергетика обладает большими перспективами.

Опасения при запуске этой станции вызвали:

  1. возможные повреждения генератора от воздействующих на него волн;
  2. безопасность движения рыболовецких траулеров в непосредственной близости от станции.

Вместе с тем волновая установка, разработанная российскими специалистами, помимо основной задачи – выработки электрической энергии, может осуществлять ряд дополнительных функций:

  1. стать волногасителем, обеспечивая защиту береговых сооружений;
  2. производить автоматическую охрану морских границ.

Развивать волновую энергетику в России необходимо. Однако существующие запасы углеводородов, отработанные, проверенные временем, освоенные до мелочей технологии традиционной выработки электроэнергии ставят под сомнение рентабельность использования волновых электростанций больших мощностей. Волновые электростанции наравне с вероятно станут тем необходимым шагом вперед в энергетике которого все мы, так долго ждем.

Есть смысл применять альтернативную энергетику в малозаселенных районах побережья Северного Ледовитого океана, Приморья, Дальнего Востока.

Имеющий все права на жизнь способ получения энергии. Но у меня сложилось впечатление, что приведенные в статье недостатки существенно перешивают достоинства.
С другой стороны, я вполне допускаю, что со временем специалисты найдут способ усовершенствовать волновые электростанции, и пока еще рано категорично говорить о плюсах и минусах данных преобразователей энергии. Слишком уж короток и мал опыт применения их на практике.

Волновая энергетика среди всех альтернативных источников энергии считается наиболее эффективной. Специалисты утверждают, что удельная мощность водных масс мирового океана намного превышает потенциал солнечной и ветровой энергии. Несмотря на этот факт, основа волновой энергетики – волновые электростанции значительно уступают по численности своим «альтернативным» конкурентам - ветровым и солнечным.

  • Волновая энергетика: стоимость технологий должна снизиться

Волновая энергетика имеет меньший спрос из-за дороговизны строительства станций на воде, хотя обслуживание волновых электростанций может быть достаточно приемлемым. С этой же проблемой в начале своего пути сталкивалась и , и , и солнечная энергетика. Однако с течением времени эти отрасли претерпели изменения, а появление новых технологий и методов позволило сократить суммы начальных вложений и, как следствие, стоимость единицы энергии. Учитывая тенденции, с которыми происходит развитие альтернативных источников энергии, можно ждать увеличения популяции волновых электростанций. Более того, уже сейчас есть очень интересные примеры таких механизмов.

Islay LIMPET является первой в мире промышленной энергетической волновой установкой. Может поставлять до 500 кВт и подключена к национальной энергосистеме. Claire Pegrum / wikimedia.org (CC BY-SA 2.0)

  • Волновая энергетика: принцип осцилляции

Сначала была придумана волновая электростанция, работающая по принципу осциллирующего столба . Осциллировать - значит колебаться, а в данном случае колебанию подвержен уровень воды в столбе. На берегу устанавливается специальная бетонная камера, расположенная под углом к морской глади так, чтобы в нее затекала вода. Прибывающие волны заполняют полость камеры, тем самым направляя воздух в турбину, генерирующую электроэнергию. Важным преимуществом волновой энергетики на базе принципа осцилляции является их меньшая стоимость по сравнению с офшорными, которые мы рассмотрим ниже.

  • Первая береговая волновая электростанция

Первая береговая волновая электростанция, названная Isley Limpet, была запущена в Шотландии и подключена к общей энергетической сети страны. Несмотря на то что станция проработала 13 лет, в 2013 г. она была выведена из эксплуатации по неизвестным причинам. Воспользовавшись опытом британских коллег, в 2011 г. испанцы соорудили на побережье Бискайского залива такую же станцию, но уже с 16 турбинами. В отличие от своего северного собрата, она действует по сей день. Технология осциллирующего столба также применяется в Португалии и Японии и довольно перспективна, правда, пока что такие генераторы выдают до 500 кВт электричества.

Islay LIMPET размещена на Claddach Farm, Rhinns of Islay, шотландский остров Islay. Peter Church / wikimedia.org (CC BY-SA 2.0)

На данный момент в мире существует всего пара-тройка знаменитых волновых электростанций.

  • Волновая энергетика : принцип колебаний

Также волновые электростанции могут работать за счет колеблющегося тела, находящегося на поверхности воды и двигающегося на волнах. Роль тела могут исполнять буи, соединенные с гидравлическими механизмами, которые приводят в движение генераторы электричества. По данной схеме была сооружена электростанция Pelamis, запущенная в 2008 г. у берегов Португалии, но на данный момент не функционирующая. Она представляла собой «змею», состоящую из нескольких секций, которые двигались на волнах относительно друг друга. Внутри секций, выполненных в виде труб диаметром 3,5 м, находились гидравлические двигатели и генераторы, откуда по кабелю, проложенному по дну океана, на берег поступало электричество. Эта станция была самой мощной из всех водных, существовавших по сей день, но, к сожалению, отсутствие финансирования не позволило ей развиваться дальше.

Электростанция Pelamis, была установлена в Agucadoura Wave Park, Portugal. S.Portland / wikimedia.org (CC-PD-Mark)

  • Волновая энергетика : принцип конвертера

Схожую по мощности установку обещала запустить шотландская компания Aquamarine Power. Она разработала конвертер, названный Oyster, представляющий собой буй в виде створки, закрепленный на дне океана недалеко от берега. Раскачиваясь на волнах, этот механизм по трубам направляет воду на сушу, где она, в свою очередь, раскручивает электрогенератор. Затем вода перегоняется обратно в океан. Многие нашли этот проект перспективным, и компания получила инвестиции в размере 11 млн фунтов. Планировалось создание комплекса таких установок в размере 50 шт., но покупателя на данный проект не нашлось. Пока что в прибрежных водах Шотландии действуют лишь несколько экспериментальных экземпляров.

  • Рентабельны волновые энергоустановки для небольших объектов

Вышеназванные примеры показывают, что ученые упорно ищут способы эффективно и, главное, рентабельно использовать силу морских волн для создания мощной глобальной отрасли волновой энергетики. Однако, как это бывает в начале любых свершений, они сталкиваются с неудачами. Так что на данный момент в мире существует всего пара-тройка знаменитых волновых электростанций. С другой стороны, если не говорить об относительно мощных станциях, то по миру уже функционирует множество установок, питающих электричеством совсем небольшие объекты. Зачастую ими пользуются маяки и прочие береговые сооружения.

OPT’s PB150 PowerBuoy успешно развернута на море в апреле 2011 командой, включающей в себя Global Maritime Scotland Ltd, Port Services (Invergordon) Ltd и OPT, с поддержкой Cromarty Firth Port Authority. Генерирует возобновляемую энергию через волны. Максимальная выходная мощность 150 квт. Ocean Power Technologies / wikimedia.org Free Art License 1.3

  • Проблема дороговизны волновых электростанций пока не решена

Для создания отрасли волновой энергетики практически с нуля ученым придется совладать с серьезными трудностями. Как уже упоминалось, главная проблема - это дороговизна. Помимо того что конструкция станций зачастую слишком затратная, требуются особые материальные усилия для ее установки на воде или на дне моря. Кроме этого, ученым необходимо больше опыта для лучшего выбора места новой станции, в котором течения будут наиболее эффективными. Не обойдется без негативного воздействия на социальные и экологические аспекты проблемы - большое количество механизмов вблизи берега будет мешать рыболовству, а также газообмену вод.

Словом, с будущим волновой энергетики пока не все ясно. Воды морей и океанов - это очень мощный, возобновляемый и экологический чистый источник энергии, но человек пока что недостаточно ловок, чтобы укротить его с малыми потерями.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Использование: к гидроэнергетике, преобразование энергии волн в электрическую энергию. Сущность изобретения: волновой генератор содержит опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия. Новым является то, что в конструкции имеются второй вертикальный цилиндрический корпус, электрогенератор, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен магнитный кольцевой ротор электрогенератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону противоположную таким же отверстиям первого корпуса. 3 ил.

Изобретение относится к гидроэнергетике и может быть использовано во всех отраслях народного хозяйства для создания дополнительных источников энергии. Известен волновой двигатель, содержащий вертикальный корпус с волноприемным отверстием, клапан и преобразователь энергии волн, где корпус выполнен цилиндрическим с крышкой и днищем, волноприемное отверстие выполнено в днище, клапан выполнен обратным и установлен в отверстии, преобразователь представляет собой вертикальный вал и жестко соединен с крышкой корпуса, при этом в нижней части боковой стенки корпуса выполнены вертикальные тангенциально расположенные щелевые отверстия. Недостатком известной конструкции является низкий КПД. Техническим результатом изобретения является повышение КПД. Технический результат достигается тем, что в волновом генераторе, содержащем вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн в виде вертикального вала, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что дополнительно содержит второй вертикальный цилиндрический корпус, электрический генератор, опору, волноприемные отверстия, причем второй вертикальный цилиндрический корпус подвижно связан с первым корпусом посредством вертикального вала, жестко соединенного с крышкой второго корпуса, и на валу жестко посажен ротор генератора, а статор жестко соединен с днищем первого корпуса, который связан с опорой, причем вертикальные тангенциально расположенные щелевые отверстия второго корпуса направлены в сторону, противоположную таким же отверстиям первого корпуса. На фиг.1 показан волновой генератор; на фиг.2 и 3 первый и второй соответственно цилиндрические корпуса, разрез. Волновой генератор содержит вертикальный цилиндрический корпус 1 с крышкой и днищем, в котором выполнено волноприемное отверстие 2, обратный клапан 3 и преобразователь энергии волн в виде вертикального вала 4, жестко соединенный с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия 5. Основными отличительными признаками являются второй вертикальный цилиндрический корпус 6, электрогенератор 7, опора 8, волноприемные отверстия 9, причем второй вертикальный цилиндрический корпус 6 подвижно связан с первым корпусом 1 посредством вертикального вала 10, жестко соединенного с крышкой второго корпуса, и на валу 10 жестко посажен магнитный кольцевой ротор 11 электрогенератора 7, а статор 12 жестко соединен с днищем первого корпуса 1, который связан с опорой 8, причем вертикальные тангенциально расположенные щелевые отверстия 13 второго корпуса 6 направлены в сторону, противоположную таким же отверстиям 5 первого корпуса 1. Волновой генератор устанавливается на некоторую глубину и работает следующим образом. При увеличении гидростатического давления возрастает давление и внутри вертикальных корпусов 1 и 6. Через обратные клапана 3, установленные в волноприемных отверстиях 2 и 9 вода вливается в корпуса 1 и 6 и приводит к уменьшению объема воздушных зазоров, которые образуются при установке генератора на глубину и находятся в верхних частях корпусов 1 и 6. Далее при спаде гидростатического давления под действием упругих сил сжатого воздуха вода с реактивной силой выбрасывается через тангенциально направленные щелевые отверстия 5 и 13, что вызывает вращательное движение корпусов 1 и 6, а следовательно, магнитного кольцевого ротора электрогенератора 11 и статора 12, причем они вращаются в противоположные друг от друга стороны, так как. вертикальные тангенциально направленные щелевые отверстия 5 и 13 корпусов 1 и 6 направлены в противоположные стороны относительно друг друга. При этом магнитные силовые линии ротора 11, пронизывая обмотку статора 12, наводят в них ЭДС. Если обмотку статора замкнуть через внешнюю цепь, то в этой цепи, а также в обмотках статора 12 возникает ток.

Формула изобретения

Волновой генератор, содержащий опору, вертикальный цилиндрический корпус с крышкой и днищем, в котором выполнено волноприемное отверстие, обратный клапан и преобразователь энергии волн, выполненный в виде вертикального вала, жестко соединенного с крышкой корпуса, в нижней части боковой стенки которого выполнены вертикальные тангенциально расположенные щелевые отверстия, отличающийся тем, что он снабжен электрическим генератором и вторым вертикальным цилиндрическим корпусом с волноприемными и вертикальными тангенциально расположенными щелевыми отверстиями, причем второй корпус подвижно связан с первым посредством дополнительного вертикального вала, жестко соединенного с крышкой второго корпуса, на дополнительном валу жестко закреплен магнитный кольцевой ротор электрического генератора, статор которого соединен с днищем первого корпуса, связанного с опорой, при этом щелевые отверстия второго корпуса направлены в сторону, противоположную щелевым отверстиям первого корпуса.

Проект московского физика Александра Темеева победил в международном конкурсе альтернативных источников энергии.

Российские ученые стали победителями международного конкурса Energy Globe в номинации "Национальный проект от России". Это соревнование в области использования возобновляемых источников энергии и охраны окружающей среды проводится Международным фондом Energy Globe совместно с Европейской комиссией.

Наука давно ищет, чем заменить быстро сокращающиеся запасы углеводородов. Возможностей много - Солнце, ветер, приливы, горячие подземные источники, волны. Их общая мощность намного превосходит все, что запасено в недрах Земли. Но взять эту энергию непросто: она слишком рассеяна, а потому обходится куда дороже, чем от сжигания нефти, газа и даже угля.

Казалось бы, очень перспективно использование волн в тех акваториях, где море всегда неспокойно. Ведь концентрация энергии в волнах в десятки раз выше по сравнению с другими возобновляемыми источниками. Не случайно во многих странах давно пытаются приручить водную стихию. Скажем, в Шотландии уже затратили свыше 70 миллионов долларов на создание волновой 150-метровой электростанции с четырьмя цилиндрами-поплавками, каждый длиной более 30 метров. Качаясь на волнах, поплавки вращают турбины генераторов.

Увы, станция так и не доведена до стадии эксплуатации. Дело в том, что у волн капризный характер. Чтобы отобрать у них энергию, поплавок должен иметь размеры, сравнимые с длиной морской волны. Но она крайне непостоянна, может то резко увеличиться, то надолго снизить свою силу, а то вовсе пропасть.

Значит, при заданных размерах поплавок будет откликаться и отбирать энергию только у вполне определенных волн, не замечая другие. То есть кпд такой системы крайне мало.

Нам удалось устранить этот недостаток, - говорит руководитель группы ученых, создавших уникальную волновую электростанцию, кандидат технических наук Александр Темеев. - Суть в следующем. В каждый поплавок мы поместили колебательное устройство, проще говоря, маятник. Он взаимодействует с волной, создавая резонанс, что позволяет отбирать энергию с высоким кпд, достигая даже 70 процентов. В принципе мощность таких волновых станций может достигать десятков мегаватт.

Проектом российских ученых заинтересовались энергетики многих стран, предложения о сотрудничестве приходят из Норвегии, Великобритании, Дании, Испании, Италии, Китая и т.д. По оценкам, стоимость электроэнергии будет составлять не более 2 рублей за кВт/ч, а капитальные затраты на сооружение электростанций окупятся за два года.

В России поплавковые электростанции наиболее перспективны в незамерзающих акваториях Баренцева моря, а в качестве регионального или сезонного источника энергии - на Черном, Каспийском и дальневосточных морях.

Похожие публикации