Уран элемент. Свойства, добыча, применение и цена урана

Цвет планет во многом зависит от состава веществ, из которых она состоит. Именно поэтому планеты выглядят по-разному. Постоянные исследования в космической области позволяют получать все новые данные о том, какого цвета планеты солнечной системы. Осуществляется поиск космических тел за ее пределами.

Солнечна система самая цветная

В солнечной системе планет не так много. Часть из них была высчитана физиками и математиками еще до появления современных телескопов. А последующие развитие астрономической науки и техники позволило разглядеть и идентифицировать цвета планет солнечной системы.

Итак, по порядку:

  • Меркурий - планета серого цвета. Цвет определен отсутствием атмосферы и воды, присутствует только скальная порода.
  • Далее идет планета Венера. Цвет ее желтовато-белый, это цвет облаков, окутывающих планету. Облака - продукт испарений соляной кислоты.
  • Земля – голубая, светло-синяя планета с покровом белых облаков. Цвет планеты во многом определен водным покровом.
  • «Красная планета» известное название Марса. На самом деле он красно-оранжевый. По окрасу пустынного грунта с большим количеством железа.
  • Большой жидкий шар – Юпитер. Основной его цвет оранжево-желтый с присутствием цветных полос. Цвета образованы облаками газов аммиака и аммония.
  • Сатурн – бледно-желтый, также цвет образован облаками аммиака, под облаками аммиака жидкий водород.
  • Светло-голубой цвет имеет Уран, но в отличие от Земли цвет образован метановыми облаками.
  • Планета зеленого цвета Нептун, хотя скорее это оттенок голубого, так как Нептун близнец Урана и цвет планеты Нептун определяется наличием метановых облаков, а поверхность его темнее из-за расстояния от Солнца.
  • Плутон, в силу наличия грязного метанового льда на поверхности, имеет светло–коричневый цвет.

Есть ли еще планеты

Астрологи и астрофизики уже много десятилетий занимаются поиском и открытием экзопланет. Так называют планеты, находящиеся за пределами солнечной системы. Активно в этом помогают телескопы, размещенные на орбите Земли, которые делают снимки и стараются дать точное представление, какого цвета планеты еще существуют. Основная цель этих трудов - найти в космическом безмолвии обитаемую планету, похожую на Землю.

В параметрах поиска основным критерием считается свечение планеты, а точнее отражение ее свечения от звезды, по образу Земли. Бело-голубой цвет не единственный оттенок. По мнению ученых, планета с излучением красного спектра также может быть обитаема. Отражение большей части Земли происходит от водной поверхности это бело-голубое свечение, а отражение от континента с растительностью будет иметь красноватый оттенок.

Пока обнаруженные экзопланеты по своим характеристикам очень похожи на Юпитер.


Своё название эта невероятно интересная планета получила в честь отца римского бога Сатурна. Именно Уран стал первой планетой, которая была открыта в современной истории. Впрочем, сначала эту планету в 1781 году отнесли в разряд комет, и только позже наблюдения астрономов доказали, что Уран – это самая настоящая планета. В нашем обзоре любопытно-интереснейшие факты о седьмой от Солнца планете, лето на которой длится 42 года.

1. Седьмая планета


Уран - седьмая планета по удаленности от Солнца, которая занимает третье место по величине и четвертое место по массе в Солнечной системе. Ее не видно невооруженным глазом, поэтому Уран стал первой планетой, обнаруженной с помощью телескопа.

2. Уран открыт в 1781 году


Уран был официально открыт сэром Уильямом Гершелем в 1781 году. Название планеты происходит от древнегреческого божества Урана, чьи сыновья были гигантами и титанами.

3. Слишком, слишком блеклый...


Уран слишком блеклый, чтобы его смогли увидеть без специальных приспособлений. Сначала Гершель думал, что это была комета, но через несколько лет подтвердилось, что это все же планета.

4. Планета лежит «на боку»


Планета вращается в обратном направлении, противоположном Земле и большинству других планет. Поскольку ось вращения Урана расположена необычно (планета лежит «на боку» относительно плоскости вращения вокруг Солнца), почти четверть года один из полюсов планеты находится в полной темноте.

5. Самый маленький из «гигантов»


Уран является самым маленьким из четырех «гигантов» (к ним также относятся Юпитер, Сатурн и Нептун), но он в несколько раз больше Земли. Экваториальный диаметр Урана 47 150 км, по сравнению с диаметром Земли 12 760 км.

6. Атмосфера из водорода и гелия


Как и у других газовых гигантов, атмосфера Урана состоит из водорода и гелия. Ниже находится ледяная мантия, которая окружает ядро из камня и льда (именно поэтому Уран часто называют «ледяным гигантом»). Облака на Уране состоят из воды, аммиака и кристаллов метана, что придает планете ее бледно-голубой цвет.

7. Уран помог с Нептуном


С того времени, как Уран был впервые обнаружен, ученые заметили, что в определенные моменты вращения по орбите планета отклоняется дальше в космос. В девятнадцатом веке некоторые астрономы предположили, что это притяжение связано с гравитацией другой планеты. Делая математические расчеты, основанные на наблюдениях Урана, два астронома, Адамс и Леверье, определили местонахождение другой планеты. Это оказался Нептун, расположенный на расстонии 10,9 астрономических единиц от Урана.

8. 19,2 астрономические единицы


Расстояния в Солнечной системе измеряются в астрономических единицах (а.е.). За одну астрономическую единицу было принято расстояние Земли от Солнца. Уран находится на расстоянии 19,2 а.е. от Солнца.

9. Внутреннее тепло планеты


Еще одним удивительным фактом об Уране является то, что внутреннее тепло планеты меньше, чем у других планет-гигантов в Солнечной системе. Причина этого неизвестна.

10. Вечная дымка из метана


Верхние слои атмосферы Урана представляет собой вечную дымку из метана. Она скрывает бури, которые бушуют в облаках.

11. Два внешних и одиннадцать внутренних


У Урана есть два набора очень тонких колец темного цвета. Частицы, из которых состоят кольца, являются весьма небольшими: от размера песчинки до небольших камушков. Есть одиннадцать внутренних колец и два внешних кольца, первые из которых были открыты в 1977 году, когда Уран прошел перед звездой и астрономы смогли наблюдать планету с помощью телескопа Хаббл.

12. Титания, Оберон, Миранда, Ариэль


Уран имеет в общей сложности двадцать семь спутников, большинство из которых были названы в честь героев комедии Шекспира «Сон в летнюю ночь». Пять главных спутников называются Титания, Оберон, Миранда, Ариэль и Умбриэль.

13. Ледяные каньоны и террасы Миранды


Самым интересным спутником Урана является Миранда. Она имеет ледяные каньоны, террасы и другие странные выглядящие участки поверхности.

14. Самая низкая температура в Солнечной системе


На Уране была зафиксирована самая низкая температура на планетах Солнечной системе - минус 224 ° C. Хотя таких температур не было замечено на Нептуне, эта планета в среднем холоднее.

15. Период обращения вокруг Солнца


Год на Уране (т. е. период обращения вокруг Солнца) длится 84 земных года. Около 42 лет каждый из ее полюсов находится под прямыми солнечными лучами, а остальную часть времени пребывает в полном мраке.

Для всех, кому интересная внеземная тема, мы собрали .

Уран - химический элемент семейства актиноидов с атомным номером 92. Является важнейшим ядерным топливом. Его концентрация в земной коре составляет около 2 частей на миллион. К важным урановым минералам относятся окись урана (U 3 O 8), уранинит (UO 2), карнотит (уранил-ванадат калия), отенит (уранил-фосфат калия) и торбернит (водный фосфат меди и уранила). Эти и другие урановые руды являются источниками ядерного топлива и содержат во много раз больше энергии, чем все известные извлекаемые месторождения ископаемого топлива. 1 кг урана 92 U дает столько же энергии, сколько 3 млн кг угля.

История открытия

Химический элемент уран - плотный, твердый металл серебристо-белого цвета. Он пластичный, ковкий и поддается полировке. В воздухе метал окисляется и в измельченном состоянии загорается. Относительно плохо проводит электричество. Электронная формула урана - 7s2 6d1 5f3.

Хотя элемент был обнаружен в 1789 г. немецким химиком Мартином Генрихом Клапротом, который назвал его в честь недавно открытой планеты Уран, сам металл был изолирован в 1841 г. французским химиком Эженом-Мельхиором Пелиго путем восстановления из тетрахлорида урана (UCl 4) калием.

Радиоактивность

Создание периодической системы российским химиком Дмитрием Менделеевым в 1869 году сосредоточило внимание на уране как на самом тяжелом из известных элементов, которым он оставался до открытия нептуния в 1940 г. В 1896-м французский физик Анри Беккерель обнаружил в нем явление радиоактивности. Это свойство позже было найдено во многих других веществах. Теперь известно, что радиоактивный во всех его изотопах уран состоит из смеси 238 U (99,27 %, период полураспада - 4 510 000 000 лет), 235 U (0,72 %, период полураспада - 713 000 000 лет) и 234 U (0,006 %, период полураспада - 247 000 лет). Это позволяет, например, определять возраст горных пород и минералов для изучения геологических процессов и возраста Земли. Для этого в них измеряется количество свинца, который является конечным продуктом радиоактивного распада урана. При этом 238 U является исходным элементом, а 234 U - один из продуктов. 235 U порождает ряд распада актиния.

Открытие цепной реакции

Химический элемент уран стал предметом широкого интереса и интенсивного изучения после того, как немецкие химики Отто Хан и Фриц Штрассман в конце 1938 г. при его бомбардировке медленными нейтронами обнаружили в нем ядерное деление. В начале 1939 г. американский физик итальянского происхождения Энрико Ферми предположил, что среди продуктов расщепления атома могут быть элементарные частицы, способные породить цепную реакцию. В 1939 г. американские физики Лео Сциллард и Герберт Андерсон, а также французский химик Фредерик Жолио-Кюри и их коллеги подтвердили это предсказание. Последующие исследования показали, что в среднем при делении атома высвобождается 2,5 нейтрона. Эти открытия привели к первой самоподдерживающейся цепной ядерной реакции (02.12.1942), первой атомной бомбе (16.07.1945), первому ее использованию в ходе военных действий (06.08.1945), первой атомной подводной лодке (1955) и первой полномасштабной атомной электростанции (1957).

Состояния окисления

Химический элемент уран, являясь сильным электроположительным металлом, реагирует с водой. Он растворяется в кислотах, но не в щелочах. Важными состояниями окисления являются +4 (как в оксиде UO 2 , тетрагалогенидах, таких как UCl 4 , и зеленом водном ионе U 4+) и +6 (как в оксиде UO 3 , гексафториде UF 6 и ионе уранила UO 2 2+). В водном растворе уран наиболее устойчив в составе иона уранила, обладающего линейной структурой [О = U = О] 2+ . Элемент также имеет состояния +3 и +5, но они неустойчивы. Красный U 3+ медленно окисляется в воде, которая не содержит кислорода. Цвет иона UO 2 + неизвестен, поскольку он претерпевает диспропорционирование (UO 2 + одновременно сводится к U 4+ и окисляется до UO 2 2+) даже в очень разбавленных растворах.

Ядерное топливо

При воздействии медленных нейтронов деление атома урана происходит в относительно редком изотопе 235 U. Это единственный природный расщепляющийся материал, и он должен быть отделен от изотопа 238 U. Вместе с тем после поглощения и отрицательного бета-распада уран-238 превращается в синтетический элемент плутоний, который расщепляется под действием медленных нейтронов. Поэтому природный уран можно использовать в реакторах-преобразователях и размножителях, в которых деление поддерживается редким 235 U и одновременно с трансмутацией 238 U производится плутоний. Из широко распространенного в природе изотопа тория-232 может быть синтезирован делящийся 233 U для использования в качестве ядерного топлива. Уран также важен как первичный материал, из которого получают синтетические трансурановые элементы.

Другие применения урана

Соединения химического элемента ранее использовались в качестве красителей для керамики. Гексафторид (UF 6) представляет собой твердое вещество с необычно высоким давлением паров (0,15 атм = 15 300 Па) при 25 °C. UF 6 химически очень реактивный, но, несмотря на его коррозионную природу в парообразном состоянии, UF 6 широко используется в газодиффузионных и газоцентрифужных методах получения обогащенного урана.

Металлоорганические соединения представляют собой интересную и важную группу соединений, в которых связи металл-углерод соединяют металл с органическими группами. Ураноцен является органоураническим соединением U(С 8 Н 8) 2 , в котором атом урана зажат между двумя слоями органических колец, связанными с циклооктатетраеном C 8 H 8 . Его открытие в 1968 г. открыло новую область металлоорганической химии.

Обедненный природный уран применяется в качестве средства радиационной защиты, балласта, в бронебойных снарядах и танковой броне.

Переработка

Химический элемент, хотя и очень плотный (19,1 г/см 3), является относительно слабым, невоспламеняющимся веществом. Действительно, металлические свойства урана, по-видимому, позиционируют его где-то между серебром и другими истинными металлами и неметаллами, поэтому его не используют в качестве конструкционного материала. Основная ценность урана заключается в радиоактивных свойствах его изотопов и их способности делиться. В природе почти весь (99,27 %) металл состоит из 238 U. Остальную часть составляют 235 U (0,72 %) и 234 U (0,006 %). Из этих естественных изотопов только 235 U непосредственно расщепляется нейтронным облучением. Однако при его поглощении 238 U образует 239 U, который в конечном итоге распадается на 239 Pu - делящийся материал, имеющий большое значение для атомной энергетики и ядерного оружия. Другой делящийся изотоп, 233 U, может образоваться нейтронным облучением 232 Th.

Кристаллические формы

Характеристики урана обусловливают его реакцию с кислородом и азотом даже в нормальных условиях. При более высоких температурах он вступает в реакцию с широким спектром легирующих металлов, образуя интерметаллические соединения. Образование твердых растворов с другими металлами происходит редко из-за особых кристаллических структур, образованных атомами элемента. Между комнатной температурой и температурой плавления 1132 °C металлический уран существует в 3 кристаллических формах, известных как альфа (α), бета (β) и гамма (γ). Трансформация из α- в β-состояние происходит при 668 °C и от β до γ - при 775 °C. γ-уран имеет объемноцентрированную кубическую кристаллическую структуру, а β - тетрагональную. α-фаза состоит из слоев атомов в высокосимметричной орторомбической структуре. Эта анизотропная искаженная структура препятствует атомам легирующих металлов заменять атомы урана или занимать пространство между ними в кристаллической решетке. Обнаружено, что твердые растворы образуют только молибден и ниобий.

Руды

Земная кора содержит около 2 частей урана на миллион, что говорит о его широком распространении в природе. По оценкам, океаны содержат 4,5 × 10 9 т этого химического элемента. Уран является важной составляющей более чем 150 различных минералов и второстепенным компонентом еще 50. Первичные минералы, обнаруженные в магматических гидротермальных жилах и в пегматитах, включают уранинит и его разновидность настуран. В этих рудах элемент встречается в форме диоксида, который вследствие окисления может варьироваться от UO 2 до UO 2,67 . Другой экономически значимой продукцией урановых рудников являются аутунит (гидратированный уранилфосфат кальция), тобернит (гидратированный уранилфосфат меди), коффинит (черный гидратированный силикат урана) и карнотит (гидратированный уранил-ванадат калия).

По оценкам, более 90 % известных недорогих запасов урана приходится на Австралию, Казахстан, Канаду, Россию, Южную Африку, Нигер, Намибию, Бразилию, КНР, Монголию и Узбекистан. Большие месторождения находятся в конгломератных скальных образованиях озера Эллиот, расположенного к северу от озера Гурон в Онтарио, Канада, и в южноафриканском золотом прииске Витватерсранде. Песчаные образования на плато Колорадо и в Вайомингском бассейне западной части США также содержатся значительные запасы урана.

Добыча

Урановые руды встречаются как в приповерхностных, так и глубоких (300-1200 м) отложениях. Под землей мощность пласта достигает 30 м. Как и в случае с рудами других металлов, добыча урана на поверхности производится крупным землеройным оборудованием, а разработка глубоких отложений - традиционными методами вертикальных и наклонных шахт. Мировое производство уранового концентрата в 2013 г. составило 70 тыс. т. Наиболее продуктивные урановые рудники расположены в Казахстане (32 % всей добычи), Канаде, Австралии, Нигере, Намибии, Узбекистане и России.

Урановые руды обычно включают лишь небольшое количество ураносодержащих минералов, и они не поддаются плавке прямыми пирометаллургическими методами. Вместо этого для извлечения и очистки урана должны использоваться гидрометаллургические процедуры. Повышение концентрации значительно снижает нагрузку на контуры обработки, но ни один из обычных способов обогащения, обычно используемых для переработки полезных ископаемых, например гравитационный, флотация, электростатический и даже ручная сортировка, неприменимы. За немногими исключениями эти методы приводят к значительной потере урана.

Обжиг

Гидрометаллургической обработке урановых руд часто предшествует высокотемпературная стадия кальцинирования. Обжиг обезвоживает глину, удаляет углеродистые материалы, окисляет соединения серы до безобидных сульфатов и окисляет любые другие восстановители, которые могут мешать последующей обработке.

Выщелачивание

Из обожженных руд уран извлекается как кислотными, так и щелочными водными растворами. Для успешного функционирования всех систем выщелачивания химический элемент должен либо первоначально присутствовать в более стабильной 6-валентной форме, либо окисляться до этого состояния в процессе обработки.

Кислотное выщелачивание обычно проводят путем перемешивания смеси руды и выщелачивателя в течение 4-48 ч при температуре окружающей среды. За исключением особых обстоятельств используется серная кислота. Ее подают в количествах, достаточных для получения конечного щелока при рН 1,5. Схемы выщелачивания серной кислоты обычно используют либо диоксид марганца, либо хлорат для окисления четырехвалентного U 4+ до 6-валентного уранила (UO 2 2+). Как правило, для окисления U 4+ достаточно примерно 5 кг двуокиси марганца или 1,5 кг хлората натрия на тонну. В любом случае окисленный уран реагирует с серной кислотой с образованием уранилсульфатного комплексного аниона 4- .

Руда, содержащая значительное количество основных минералов, таких как кальцит или доломит, выщелачивается 0,5-1-молярным раствором карбоната натрия. Хотя были изучены и протестированы различные реагенты, основным окислителем урана является кислород. Обычно руда выщелачиваются на воздухе при атмосферном давлении и при температуре 75-80 °C в течение периода времени, который зависит от конкретного химического состава. Щелочь реагирует с ураном с образованием легкорастворимого комплексного иона 4- .

Перед дальнейшей обработкой растворы, образующиеся в результате кислотного или карбонатного выщелачивания, должны быть осветлены. Крупномасштабное разделение глин и других рудных шламов осуществляется за счет использования эффективных хлопьеобразующих агентов, в том числе полиакриламидов, гуаровой смолы и животного клея.

Экстракция

Сложные ионы 4- и 4- могут быть сорбированы из их соответствующих выщелачивающих растворов ионообменных смол. Эти специальные смолы, характеризующиеся кинетикой их сорбции и элюирования, размером частиц, стабильностью и гидравлическими свойствами, могут использоваться в различных технологиях обработки, например в неподвижном и подвижном слое, методом ионообменной смолы в пульпе корзинного и непрерывного типа. Обычно для элюирования сорбированного урана используют растворы хлорида натрия и аммиака или нитратов.

Уран можно выделить из кислых рудных щелоков путем экстракции растворителем. В промышленности используются алкилфосфорные кислоты, а также вторичные и третичные алкиламины. Как правило, экстракция растворителем предпочтительна по сравнению с ионообменными методами для кислотных фильтратов, содержащих более 1 г/л урана. Однако этот метод не применяется при карбонатном выщелачивании.

Затем уран очищают, растворяя в азотной кислоте с образованием уранилнитрата, экстрагируют, кристаллизуют и прокаливают с образованием трехокиси UO 3 . Восстановленный диоксид UO2 реагирует с фтористым водородом с образованием тетафторида UF4, из которого металлический уран восстанавливается магнием или кальцием при температуре 1300 °C.

Тетрафторид можно фторировать при температуре 350 °C до образования гексафторида UF 6 , используемого для отделения обогащенного урана-235 методом газовой диффузии, газового центрифугирования или жидкой термодиффузии.

Если бороздить просторы интернета, то можно заметить, что одна и та же планета Солнечной системы может иметь разнообразные цвета. Один ресурс показал Марс красным, а другом коричневым и у рядового пользователя возникает вопрос «Где истина?»

Такой вопрос волнует тысячи людей и поэтому, мы решили раз и навсегда ответить на него, чтобы не было никаких разногласий. Сегодня вы узнаете какого же на самом деле цвета планеты Солнечной системы!

Цвет серый. Минимальное наличие атмосферы и скалистая поверхность с весьма крупными кратерами.

Цвет желто-белый. Цвет обеспечен плотным слоем облаков из серной кислоты.

Цвет светло-голубой. Океаны и атмосфера придают нашей планете характерный оттенок. Однако, если смотреть на континенты, то вы увидите коричневые, желтые и зеленые цвета. Если же говорить о том, как выглядит наша планета на удаление - это будет исключительно нежно-голубого цвета шарик.

Цвет красно-оранжевый. Планета богата оксидами железа за счет чего почва окрашена в характерный цвет.

Цвет оранжевый с белыми элементами. Оранжевый обусловлен облаками из гидросульфида аммония, белые элементы – облаками аммиака. Твердой поверхности нет.

Цвет светло-желтый. Красные облака планеты покрыты тонкой дымкой белых облаков аммиака, что создает иллюзию светло-желтого цвета. Твердой поверхности нет.

Цвет бледно-голубой. Метановые облака имеют характерный оттенок. Твердой поверхности нет.

Цвет бледно-голубой. Как и Уран покрыт метановыми облаками, однако, удаленность от Солнца создает видимость более темной планеты. Твердой поверхности нет.

Плутон: Цвет светло-коричневый. Каменистая поверхность и грязная ледяная корка создают весьма приятный светло-коричневый оттенок.

В древности люди не знали о его существовании, а открыт он был при помощи английским астрономом только в 1781 .

Уран — самая холодная планета Солнечной системы, но ученые считают, что под покровом его атмосферы скрываются кипящие океаны, которые состоят из смеси и различных газов. У этой планеты нет твердого внутреннего ядра.

Открытие Урана

До 1781 г. никто не подозревал о существовании Урана — седьмой планеты Солнечной системы. Уран настолько удален от Солнца, что невооруженным глазом его почти невозможно заметить.

Британский астроном Уильям Гершель длительное время вел за на определенном участке неба, когда в один из внезапно обнаружил, что крохотная туманная звездочка изменила положение относительно других звезд.

В 1948 г. Дж. Койпер обнаружил наименьший из пяти больших спутников планеты — Миранду, а в 1986 г. «Вояджер-2» открыл сразу 10 внутренних спутников. Еще несколько небольших тел на «околоурановых» орбитах были обнаружены с помощью космического телескопа « ».

Большинство спутников Урана носят имена героев 13 драм, комедий и трагедий великого английского драматурга.

Спутники Урана

«Луны» Урана похожи одна на другую — это, в основном, темные скопления льда и горных пород, содержащие также аммиак и углекислый газ.

Самый светлый из спутников Урана — Ариэль, он отражает до 40 % солнечного , а самый темный — Умбриэль. При этом Ариэль, очевидно, самый молодой из всех крупных спутников, а Умбриэль — самый старый.

Самый своеобразный вид среди «большой пятерки» имеет Миранда, открытая Дж. Койпером.

Этот спутник диаметром 470 км вращается ближе других к Урану, а его поверхность испещрена следами бурного прошлого — разломами, бороздами, обрывами, ущельями и хребтами.

Вблизи Южного полюса этой планетки, имеющей неправильную форму, расположен отвесный обрыв высотой в 15 км. Специалисты считают, что в прошлом Миранда, столкнувшись с другим небесным телом, распалась на части, а затем вновь «собралась», но уже не в том порядке, как раньше.

Ариэль, второй по удаленности от планеты крупный спутник — это мир глубоких ущелий. Причина образования желобов, делающих «лицо» Ариэля похожим на печеное яблоко, пока не выяснена, тем более, что эти желоба во многих местах наполовину заполнены веществом неизвестного происхождения.

Древняя поверхность Умбриэля, следующего по счету спутника, покрыта бесчисленными крупными и мелкими кратерами.

Этот спутник отражает в два раза меньше света по сравнению с другими спутниками Урана, но причину этого специалисты не знают, неизвестно также и происхождение яркого светлого кольца на «макушке» Умбриэля.

Ведь из всех космических аппаратов, предназначенных для исследования дальних окрестностей Солнечной системы, вблизи Урана побывал только «Вояджер-2», которому удалось не только сфотографировать Умбриэль, но и определить его химический состав.

Титания — самый крупный спутник из «большой пятерки», представляет собой «грязный» ледяной шар с поверхностью, обезображенной кратерами, ущельями и разломами. Как и другие спутники Урана, Титания неоднократно «переформировывалась» в прошлом, меняя облик и рельеф.

Об Обероне, хоть он был открыт одним из первых, до полета «Вояджера-2» практически ничего не было известно. Он также усеян кратерами, но, в отличие от других больших спутников, на нем есть , высота которой достигает 6 км.

Кольца числом тринадцать

Еще Уильям Гершель утверждал, что ему удалось наблюдать кольца у Урана, но подтвердить свое наблюдение ученому не удалось.

Открыты они были лишь в 1977 г., но не с помощью космических аппаратов, а при прохождении диска Урана перед звездой второй величины.

Исследователи рассчитывали получить данные об атмосфере планеты, а открыли первые девять колец. Самое яркое из них имеет ширину 96 км и толщину всего в несколько метров.

Считается, что кольца Урана очень молоды и сформировались не вместе с планетой, а гораздо позже. Вероятно, это остатки одного из спутников, который разрушен столкновением или силами планеты.

Похожие публикации