Единицы измерения количества теплоты и работы. Единица измерения количества теплоты

Теплота - энергия, передаваемая от более нагретого тела менее нагретому при непосредственном соприкосновении или излучением.

Мерой интенсивности движения молекул является температура .

Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37°С. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций , работающих на ископаемом топливе (угле , нефти) и вырабатывающих электроэнергию .

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем <калорической жидкости>, или <теплорода>. Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли <калорическую> теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом - это всего лишь энергия движения его атомов или молекул . Именно такого понимания теплоты придерживается современная физика.

В этой статье мы рассмотрим, как связаны между собой теплота и температура и каким образом измеряют эти величины. Предметом нашего обсуждения будут также следующие вопросы: передача теплоты от одной части тела к другой; перенос теплоты в вакууме (пространстве, не содержащем вещества); роль теплоты в современном мире.

Теплота и температура

Количество тепловой энергии в веществе нельзя определить, наблюдая за движением каждой его молекулы по отдельности. Напротив, только изучая макроскопические свойства вещества, можно найти усредненные за некий период времени характеристики микроскопического движения многих молекул. Температура вещества - это средний показатель интенсивности движения молекул , энергия которого и есть тепловая энергия вещества.

Один из самых привычных, но и наименее точных способов оценки температуры - на ощупь. Трогая предмет, мы судим о том, горячий он или холодный, ориентируясь на свои ощущения. Конечно, эти ощущения зависят от температуры нашего тела, что подводит нас к понятию теплового равновесия - одному из важнейших при измерении температуры.

Тепловое равновесие

Тепловое равновесие между телами А и В

Очевидно, что если два тела A и B плотно прижать друг к другу, то, потрогав их спустя достаточно долгое время, мы заметим, что температура их одинакова. В этом случае говорят, что тела A и B находятся в тепловом равновесии друг с другом. Однако тела, вообще говоря, не обязательно должны соприкасаться, чтобы между ними существовало тепловое равновесие, - достаточно, чтобы их температуры были одинаковыми. В этом можно убедиться с помощью третьего тела C, приведя его сначала в тепловое равновесие с телом A, а затем сравнив температуры тел C и B. Тело C здесь играет роль термометра . В строгой формулировке этот принцип называется нулевым началом термодинамики : если тела A и B находятся в тепловом равновесии с третьим телом C, то эти тела находятся также в тепловом равновесии друг с другом. Этот закон лежит в основе всех способов измерения температуры.

Измерение температуры

Температурные шкалы

Термометры

Термометры основанные на электрических эффектах

Если мы хотим проводить точные эксперименты и вычисления, то таких оценок температуры, как горячий, теплый, прохладный, холодный, недостаточно - нам нужна проградуированная температурная шкала. Существует несколько таких шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Четыре наиболее распространенные шкалы представлены на рисунке. Стоградусная шкала, по которой точке замерзания воды соответствует 0°, а точке кипения 100°, называется шкалой Цельсия по имени А.Цельсия, шведского астронома, который описал ее в 1742. Полагают, что впервые применил эту шкалу шведский натуралист К.Линней. Сейчас шкала Цельсия является самой распространенной в мире. Температурная шкала Фаренгейта, в которой точкам замерзания и кипения воды соответствуют крайне неудобные числа 32 и 212°, была предложена в 1724 Г.Фаренгейтом. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32, а для обратного перевода - формула °C = (5/9)(°F-32).

Обе шкалы - как Фаренгейта, так и Цельсия, - весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю - точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°R) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7°R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273,16, а градусы Фаренгейта - в градусы Ранкина по формуле °R = °F + 459,7.

В основе действия приборов, предназначенных для измерения температуры, лежат разные физические явления, связанные с изменением тепловой энергии вещества, - изменения электрического сопротивления, объема, давления , излучательных характеристик, термоэлектрических свойств. Один из наиболее простых и знакомых инструментов для измерения температуры - стеклянный термометр , изображенный на рисунке. Шарик с в нижней части термометра располагают в среде или прижимают к предмету, температуру которого хотят измерить, и в зависимости от того, получает шарик тепло или отдает, расширяется или сжимается и ее столбик поднимается или опускается в капилляре. Если термометр заранее проградуирован и снабжен шкалой, то можно прямо узнать температуру тела.

Другой прибор, действие которого основано на тепловом расширении, - биметаллический термометр , изображенный на рисунке. Основной его элемент - спиральная пластинка из двух спаянных металлов с разными коэффициентами теплового расширения. При нагревании один из металлов расширяется сильнее другого, спираль закручивается и поворачивает стрелку относительно шкалы. Такие устройства часто используют для измерения температуры воздуха в помещениях и на улице, однако они не подходят для определения локальной температуры.

Локальную температуру измеряют обычно с помощью термопары , представляющей собой две проволочки из разнородных металлов, спаянные с одного конца. При нагревании такого спая на свободных концах проволочек возникает ЭДС , обычно составляющая несколько милливольт. Термопары делают из разных металлических пар: железа и константана, меди и константана, хромеля и алюмеля . Их термо-ЭДС практически линейно меняется с температурой в широком температурном диапазоне.

Известен и другой термоэлектрический эффект - зависимость сопротивления проводящего материала от температуры . Он лежит в основе работы электрических термометров сопротивления, один из которых изображен на рисунке. Сопротивление небольшого термочувствительного элемента (термопреобразователя) - обычно катушки из тонкой проволоки - сравнивают с сопротивлением проградуированного переменного резистора, используя мост Уитстона. Выходной прибор может быть проградуирован непосредственно в градусах.

Для измерения температуры раскаленных тел, испускающих видимый свет, используют оптические пирометры . В одном из вариантов этого устройства свет, излучаемый телом, сравнивают с излучением нити лампы накаливания, помещенной в фокальную плоскость бинокля, через который смотрят на излучающее тело. Электрический ток , нагревающий нить лампы, изменяют до тех пор, пока при визуальном сравнении свечения нити и тела не обнаружится, что между ними установилось тепловое равновесие. Шкала прибора может быть проградуирована непосредственно в единицах температуры.

Технические достижения последних лет позволили создать новые датчики температуры. Например, в тех случаях, когда нужна особенно высокая чувствительность, вместо термопары или обычного термометра сопротивления используют полупроводниковое устройство - термистор . В качестве термопреобразователей применяют также изменяющие свое фазовое состояние красители и жидкие кристаллы, особенно в тех случаях, когда температура поверхности тела изменяется в широком диапазоне. Наконец, используется инфракрасная термография, в которой получают ИК-изображение объекта в условных цветах, где каждый цвет отвечает определенной температуре. Этот способ измерения температуры находит самое широкое применение - от медицинской диагностики до проверки теплоизоляции помещений.

Измерение количества теплоты

Водяной калориметр

Тепловую энергию (количество теплоты) тела можно измерить непосредственно с помощью так называемого калориметра ; простой вариант такого прибора изображен на рисунке. Это тщательно теплоизолированный закрытый сосуд, снабженный устройствами для измерения температуры внутри него и иногда заполняемый рабочей жидкостью с известными свойствами, например водой . Чтобы измерить количество теплоты в небольшом нагретом теле, его помещают в калориметр и ждут, когда система придет в тепловое равновесие. Количество теплоты, переданное калориметру (точнее, наполняющей его воде), определяют по повышению температуры воды.

Количество теплоты, выделяющейся в ходе химической реакции, например горения, можно измерить, поместив в калориметр небольшую <бомбу>. В <бомбе> находятся образец, к которому подведены электрические провода для поджига, и соответствующее количество кислорода . После того как образец полностью сгорает и устанавливается тепловое равновесие, определяют, насколько повысилась температура воды в калориметре, а отсюда - количество выделившейся теплоты.

Единицы измерения теплоты

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемных единиц количества теплоты - калорий: международная калория равна 4,1868 Дж, термохимическая калория - 4,1840 Дж. В зарубежных лабораториях результаты исследований часто выражают с помощью т.н. 15-градусной калории, равной 4,1855 Дж. Выходит из употребления внесистемная британская тепловая единица (БТЕ): БТЕ средн = 1,055 Дж.

Источники теплоты

Основными источниками теплоты являются химические и ядерные реакции, а также различные процессы преобразования энергии. Примерами химических реакций с выделением теплоты являются горение и расщепление компонентов пищи. Почти вся теплота, получаемая Землей, обеспечивается ядерными реакциями, протекающими в недрах Солнца. Человечество научилось получать теплоту с помощью управляемых процессов деления ядер, а теперь пытается использовать с той же целью реакции термоядерного синтеза. В теплоту можно превращать и другие виды энергии, например механическую работу и электрическую энергию. Важно помнить, что тепловую энергию (как и любую другую) можно лишь преобразовать в другую форму, но нельзя ни получить <из ничего>, ни уничтожить. Это один из основных принципов науки, называемой термодинамикой .

Термодинамика

Термодинамика - это наука о связи между теплотой, работой и веществом. Современные представления об этих взаимосвязях сформировались на основе трудов таких великих ученых прошлого, как Карно, Клаузиус, Гиббс, Джоуль, Кельвин и др. Термодинамика объясняет смысл теплоемкости и теплопроводности вещества, теплового расширения тел, теплоты фазовых переходов. Эта наука базируется на нескольких экспериментально установленных законах - началах.

Теплота и свойства веществ

Различные вещества обладают разной способностью накапливать тепловую энергию; это зависит от их молекулярной структуры и плотности . Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус, называется его удельной теплоёмкостью . Теплоёмкость зависит от условий, в которых находится вещество. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. Поэтому, в частности, теплоёмкость газов измеряют раздельно при постоянном давлении и при постоянном объеме.

При повышении температуры интенсивность хаотического движения молекул возрастает - большинство веществ при нагревании расширяется. Степень расширения вещества при повышении температуры на 1 К называется коэффициентом теплового расширения .

Чтобы вещество перешло из одного фазового состояния в другое, например из твердого в жидкое (а иногда сразу в газообразное), оно должно получить определенное количество тепла . Если нагревать твердое тело, то его температура будет повышаться до тех пор, пока оно не начнет плавиться; до завершения плавления температура тела будет оставаться постоянной, несмотря на подвод тепла . Количество теплоты, необходимое для плавления единицы массы вещества, называется теплотой плавления. Если подводить тепло и дальше, то расплавленное вещество нагреется до кипения. Количество теплоты, необходимое для испарения единицы массы жидкости при данной температуре, называется теплотой парообразования.

Роль теплоты и ее использование

Схема работы паротурбинной электростанции

Схема холодильного цикла

Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты.

Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии.

Теплота - непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов - от кирпичей и посуды до автомобилей и электронных устройств.

Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин - устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры , турбины , паровые, бензиновые и реактивные двигатели.

Одной из наиболее известных тепловых машин является паровая турбина , в которой реализуется часть цикла Ранкина, используемого на современных электростанциях . Упрощенная схема этого цикла представлена на рисунке. Рабочую жидкость - воду - превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого

Тепловую энергию (количество теплоты) тела можно измерить непосредственно с помощью так называемого калориметра; простой вариант такого прибора изображен на рис. 5. Это тщательно теплоизолированный закрытый сосуд, снабженный устройствами для измерения температуры внутри него и иногда заполняемый рабочей жидкостью с известными свойствами, например водой. Чтобы измерить количество теплоты в небольшом нагретом теле, его помещают в калориметр и ждут, когда система придет в тепловое равновесие. Количество теплоты, переданное калориметру (точнее, наполняющей его воде), определяют по повышению температуры воды. (14.86 Кб)

Количество теплоты, выделяющейся в ходе химической реакции, например горения, можно измерить, поместив в калориметр небольшую «бомбу». В «бомбе» находятся образец, к которому подведены электрические провода для поджига, и соответствующее количество кислорода. После того как образец полностью сгорает и устанавливается тепловое равновесие, определяют, насколько повысилась температура воды в калориметре, а отсюда – количество выделившейся теплоты.

См. также КАЛОРИМЕТРИЯ. Единицы измерения теплоты . Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемных единиц количества теплоты – калорий: международная калория равна 4,1868 Дж, термохимическая калория – 4,1840 Дж. В зарубежных лабораториях результаты исследований часто выражают с помощью т.н. 15-градусной калории, равной 4,1855 Дж. Выходит из употребления внесистемная британская тепловая единица (БТЕ): БТЕ средн = 1,055 Дж. Основными источниками теплоты являются химические и ядерные реакции, а также различные процессы преобразования энергии. Примерами химических реакций с выделением теплоты являются горение и расщепление компонентов пищи. Почти вся теплота, получаемая Землей, обеспечивается ядерными реакциями, протекающими в недрах Солнца. Человечество научилось получать теплоту с помощью управляемых процессов деления ядер, а теперь пытается использовать с той же целью реакции термоядерного синтеза. В теплоту можно превращать и другие виды энергии, например механическую работу и электрическую энергию. Важно помнить, что тепловую энергию (как и любую другую) можно лишь преобразовать в другую форму, но нельзя ни получить «из ничего», ни уничтожить. Это один из основных принципов науки, называемой термодинамикой. ТЕРМОДИНАМИКА Термодинамика – это наука о связи между теплотой, работой и веществом. Современные представления об этих взаимосвязях сформировались на основе трудов таких великих ученых прошлого, как Карно, Клаузиус, Гиббс, Джоуль, Кельвин и др. Термодинамика объясняет смысл теплоемкости и теплопроводности вещества, теплового расширения тел, теплоты фазовых переходов. Эта наука базируется на нескольких экспериментально установленных законах – началах. Начала термодинамики . Сформулированное выше нулевое начало термодинамики вводит понятия теплового равновесия, температуры и термометрии. Первое начало термодинамики представляет собой утверждение, имеющее ключевое значение для всей науки в целом: энергию нельзя ни уничтожить, ни получить «из ничего», так что полная энергия Вселенной есть величина постоянная. В простейшей форме первое начало термодинамики можно сформулировать так: энергия, которую получает система, минус энергия, которую она отдает, равна энергии, остающейся в системе. На первый взгляд это утверждение кажется очевидным, но не в такой, например , ситуации, как сгорание бензина в цилиндрах автомобильного двигателя: здесь получаемая энергия является химической, отдаваемая –механической (работой), а энергия, остающаяся в системе, – тепловой.

Итак, ясно, что энергия может переходить из одной формы в другую и что такие преобразования постоянно происходят в природе и технике. Более ста лет назад Дж.Джоуль доказал это для случая превращения механической энергии в тепловую с помощью устройства, показанного на рис. 6,

а . В этом устройстве опускающиеся и поднимающиеся грузы вращали вал с лопастями в заполненном водой калориметре, в результате чего вода нагревалась. Точные измерения позволили Джоулю определить, что одна калория теплоты эквивалентна 4,186 Дж механической работы. Устройство, изображенное на рис. 6, б , использовалось для определения теплового эквивалента электрической энергии.

Первое начало термодинамики объясняет многие обыденные явления. Например, становится ясно, почему нельзя охладить кухню с помощью открытого холодильника. Предположим, что мы теплоизолировали кухню от окружающей среды. По проводу питания холодильника в систему непрерывно подводится энергия, но при этом никакой энергии система не отдает. Таким образом, ее полная энергия возрастает, и в кухне становится все теплее: достаточно потрогать трубки теплообменника (конденсатора) на задней стенке холодильника, и вы поймете бесполезность его как «охлаждающего» устройства. Но если бы эти трубки были выведены за пределы системы (например, за окно), то кухня отдавала бы больше энергии, чем получала, т.е. охлаждалась бы, а холодильник работал как оконный кондиционер.

Первое начало термодинамики – закон природы, исключающий создавание заново или уничтожение энергии. Однако оно ничего не говорит о том, как протекают в природе процессы передачи энергии. Так, мы знаем, что горячее тело нагреет холодное, если эти тела привести в соприкосновение. Но сможет ли холодное тело само по себе передать запас своей теплоты горячему? Последняя возможность категорически отвергается вторым началом термодинамики.

Первое начало исключает также возможность создания двигателя с коэффициентом полезного действия (КПД) более 100% (подобный

« вечный » двигатель мог бы сколь угодно долго отдавать больше энергии, чем сам потребляет). Нельзя построить двигатель даже с КПД, равным 100%, так как некоторая часть подводимой к нему энергии обязательно должна быть потеряна им в виде менее полезной тепловой энергии. Так, колесо не будет крутиться сколь угодно долго без подвода энергии, поскольку вследствие трения в подшипниках энергия механического движения будет постепенно переходить в теплоту, пока колесо не остановится.

Тенденцию к превращению «полезной» работы в менее полезную энергию – теплоту – можно сопоставить с другим процессом, который происходит, если соединить два сосуда, содержащие разные газы. Подождав достаточно долго, мы обнаруживаем в обоих сосудах однородную смесь газов – природа действует так, что упорядоченность системы уменьшается. Термодинамическая мера этой неупорядоченности называется энтропией, и второе начало термодинамики можно сформулировать иначе: процессы в природе всегда протекают так, что энтропия системы и ее окружения увеличивается. Таким образом, энергия Вселенной остается постоянной, а ее энтропия непрерывно растет.

В данном уроке рассматривается понятие количества теплоты.

Если до этого момента мы рассматривали общие свойства и явления, связанные с теплом, энергией или их передачей, то теперь пришло время познакомиться с количественными характеристиками этих понятий. А точнее, ввести понятие количества теплоты. На этом понятии будут основаны все дальнейшие расчеты, связанные с преобразованиями энергии и теплотой.

Определение

Количество теплоты - это энергия, которая передается с помощью теплопередачи.

Рассмотрим вопрос: какой величиной мы будем выражать это количество теплоты?

Количество теплоты связано с внутренней энергией тела, поэтому, когда тело получает энергию, его внутренняя энергия увеличивается, а когда отдает - уменьшается (рис. 1).

Рис. 1. Взаимосвязь количества теплоты и внутренней энергии

Аналогичные выводы можно сделать и о температуре тела (рис. 2).

Рис. 2. Взаимосвязь количества теплоты и температуры

Внутренняя энергия выражается в джоулях (Дж). Значит, количество теплоты также измеряется в джоулях (в СИ):

Стандартное обозначение количества теплоты.

Чтобы выяснить: от чего зависит , проведем 3 эксперимента.

Эксперимент № 1

Возьмем два одинаковых тела, но разной массы. Например, возьмем две одинаковые кастрюли и нальем в них разное количество воды (одинаковой температуры).

Очевидно, что для того, чтобы вскипятить ту кастрюлю, в которой воды больше, потребуется больше времени. То есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от массы (прямо пропорционально - чем больше масса, тем больше количество теплоты).

Рис. 3. Эксперимент № 1

Эксперимент № 2

Во втором эксперименте мы будем нагревать тела одинаковой массы до разной температуры. То есть возьмем две кастрюли с водой одинаковой массы и нагреем одну из них на , а вторую, к примеру, на .

Очевидно, что, для того чтобы нагреть кастрюлю до большей температуры, понадобится больше времени, то есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от разности температур (прямо пропорционально - чем больше разность температур, тем больше количество теплоты).

Рис. 4. Эксперимент № 2

Эксперимент № 3

В третьем эксперименте рассмотрим зависимость количества теплоты от характеристик вещества. Для этого возьмем две кастрюли и нальем в одну из них воду, а в другую - подсолнечное масло. При этом температуры и массы воды и масла должны быть одинаковы. Будем нагревать обе кастрюли до одинаковой температуры.

Для того чтобы нагреть кастрюлю с водой, потребуется больше времени, то есть ей необходимо будет сообщить большее количество теплоты.

Из этого можно сделать вывод, что количество теплоты зависит от рода вещества (подробнее о том, как именно, мы поговорим на следующем уроке).

Рис. 5. Эксперимент № 3

После проведенных экспериментов можно сделать вывод, что зависит:

  • от массы тела;
  • изменения его температуры;
  • рода вещества.

Отметим, что во всех рассмотренных нами случаях речь не идет о фазовых переходах (то есть изменениях агрегатного состояния вещества).

Вместе с тем численное значение количества теплоты может зависеть и от его единиц измерения. Кроме джоуля, который является единицей СИ, используется еще одна единица измерения количества теплоты - калория (переводится как «жар», «тепло»).

Это достаточно маленькое значение, поэтому чаще используется понятие килокалории: . Эта величина соответствует количеству теплоты, которое необходимо передать воды, чтобы нагреть его на .

На следующем уроке мы рассмотрим понятие удельной теплоемкости, которая связывает вещество и количество теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «festival.1september.ru» ()
  2. Интернет-портал «class-fizika.narod.ru» ()
  3. Интернет-портал «school.xvatit.com» ()

Домашнее задание

  1. Стр. 20, параграф 7, вопросы № 1-6. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  2. Почему вода в озере остывает за ночь гораздо меньше, чем песок на пляже?
  3. Почему климат, для которого характерны резкие перепады температуры между днем и ночью, называют резко континентальным?

Когда мы будем обсуждать способы отоплении дома, варианты снижения утечек тепла, мы должны понимать, что такое тепло, в каких единицах оно измеряется, как передается и как теряется. На этой странице будут приведены основные сведения из курса физики, необходимые для рассмотрения всех перечисленных вопросов.

Теплота — один из способов передачи энергии

Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой.

В строгом смысле теплота представляет собой один из способов передачи энергии, и физический смысл имеет лишь количество энергии, переданное системе, но слово «тепло-» входит в такие устоявшиеся научные понятия, как поток тепла, теплоёмкость, теплота фазового перехода, теплота химической реакции, теплопроводность и пр. Поэтому там, где такое словоупотребление не вводит в заблуждение, понятия «теплота» и «количество теплоты» синонимичны. Однако этими терминами можно пользоваться только при условии, что им дано точное определение, и ни в коем случае «количество теплоты» нельзя относить к числу первоначальных понятий, не требующих определения. Во избежание ошибок под понятием «теплота» следует понимать именно способ передачи энергии, а количество переданной этим способом энергии обозначают понятием «количество теплоты». Рекомендуется избегать такого термина, как «тепловая энергия».

Теплота — это кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемной единицы количества теплоты — калории: международная калория равна 4,1868 Дж.

Теплообмен и теплопередача

Теплопередача — это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда). Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью. Теплопроводность стержня оценивается величиной теплового потока , который зависит от коэффициента теплопроводности, площади поперечного сечения, через которое передается теплота и градиента температуры (отношения разности температур на концах стержня к расстоянию между ними). Единицей теплового потока является ватт.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(м^2*К)
Металлы
Алюминий ___________________205
Бронза _____________________105
Вольфрам ___________________159
Железо ______________________67
Медь _______________________389
Никель ______________________58
Свинец ______________________35
Цинк _______________________113
Другие материалы
Асбест _______________________0,08
Бетон ________________________0,59
Воздух _______________________0,024
Гагачий пух (неплотный) ______0,008
Дерево (орех) ________________0,209
Опилки _______________________0,059
Резина (губчатая) ____________0,038
Стекло _______________________0,75

Конвекция

Конвекция — это теплообмен за счет перемещения масс воздуха или жидкости. При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент конвективного теплопереноса можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается.

Тепловое излучение

Третий вид теплопередачи — лучистый теплообмен — отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения составляет примерно 1,37 Вт/м2.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры.

Теплоёмкость

Различные вещества обладают разной способностью накапливать тепло; это зависит от их молекулярной структуры и плотности. Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус (1 °С или 1 К), называется его удельной теплоемкостью. Теплоемкость измеряется в Дж/(кг К).

Обычно различают теплоемкость при постоянном объёме (C V ) и теплоемкость при постоянном давлении (С P ), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть — на увеличение его внутренней энергии, тогда как при нагревании при постоянном объёме вся теплота расходуется на увеличение внутренней энергии; в связи с этим С Р всегда больше, чем C V . У жидкостей и твёрдых тел разница между С Р и C V сравнительно мала.

Тепловые машины

Тепловые машины — это устройства, преобразующие теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Одной из наиболее известных тепловых машин является паровая турбина, использующаяся на современных тепловых электростанциях. Упрощенная схема такой электростанции на рисунке 1.

Рис. 1. Упрощенная схема паротурбинной электростанции, работающей на ископаемом топливе.

Рабочую жидкость — воду — превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Другим примером тепловой машины может служить бытовой холодильник, схема которого представлена на рис. 2.

В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника — фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

СООТНОШЕНИЯ МЕЖДУ ЕДИНИЦАМИ ИЗМЕРЕНИЯ ЭНЕРГИИ

Таблицы пересчета физических величин.

Энергия, тепло, работа

Пересчет

кВт ч

кгс м

ккал

1 кВт ч

1 кгс м

1 ккал

Давление

Пересчет

Па
(Паскаль)

Бар
(Бар)

мм рт. ст.
(миллиметр ртутного столба)

мм вод. ст.
(миллиметр водяного столба)

кгс/см 2
(техническая атмосфера)

атм
(физическая атмосфера)

1 бар

1 мм рт. ст.

1 мм вод. ст.

1 кгс/см 2

1 атм

Давление - это физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности, к площади это поверхности. Единица давления - паскаль (Па), равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление по всем направлениям (закон Паскаля).
Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление земной атмосферы - атмосферное давление. В каждой точке атмосферы это давление равно весу вышележащего столба воздуха; с высотой убывает. Среднее атмосферное давление на уровне моря эквивалентно давлению 760 мм рт. ст. (1013,25 гПа). Кроме атмосферного, различают абсолютное и избыточное давления. Абсолютным называют полное давление с учетом давления атмосферы, отсчитываемое от абсолютного нуля. Избыточным называют давление сверх атмосферного, равное разности между абсолютным и атмосферным давлением. Избыточное давление отсчитывается от условного нуля, за который принимается атмосферное давление. Абсолютное давление, меньшее, чем атмосферное, называют разрежением или вакуумом. Другими словами, вакуум равен разности между атмосферным и абсолютным давлениями.
Для измерения избыточного давления газа, пара и жидкости применяются манометры; небольших давлений и вакуума - напоромеры и тягомеры; вакуума - вакуумметры; давления и вакуума - тягонапоромеры и мановакуумметры.

Температура

Температура - это физическая величина, характеризующая степень нагретости тел. Она представляет собой меру средней кинетической энергии поступательного движения молекул. Чем больше средняя скорость движения молекул, тем выше температура тела.
Понятие температуры связано также со способностью тел с более высокой температурой передавать свою теплоту телам с более низкой температурой до тех пор, пока эти температуры не сравняются. Одновременно с изменением температуры тел могут меняться их физические свойства.
Приборы для измерения температуры подразделяют в зависимости от того, какой метод положен в основу их конструкции: контактный (когда измерительный прибор соприкасается с измеряемой средой), или неконтактный. К приборам, основанным на контактном методе измерений, относят жидкостные стеклянные термометры, манометрические термометры, термоэлектрические термометры (термопары) и термопреобразователи сопротивления. К приборам, основанным на неконтактном методе, относят пирометры излучения.

Соотношение единиц измерения

Длина

1 дюйм

1 миллиметр

0,03937 дюйма

1 фут

1 сантиметр

0,3937 дюйма

1 ярд

1 дециметр

0,3281 фута

1 род

1 метр

3,281 фута

1 чейн

1 метр

1,094 ярда

1 фурлонг

10,94 ярда

1 миля

1 километр

0,6214 мили

1 морская миля

1 километр

0,539 морской мили

Площадь

1 кв. дюйм

6,4516 кв. см

1 кв. сантиметр

0,1550 кв. дюйма

1 кв. фут

929,03 кв. см

1 кв. метр

1,550 кв. дюйма

1 кв. ярд

0,8361 кв. м

119,60 кв. ярда

1 акр

4046,9 кв. м

1 гектар

2,4711 акра

1 кв. миля

1 кв. километр

0,3861 кв. мили

Объем

1 куб. дюйм

16,387 куб. см

1 куб. сантиметр

0,061 куб. дюйма

1 куб. фут

0,0283 куб. м

1 куб. дециметр

0,035 куб. фута

1 куб. ярд

0,7646 куб. м

1 куб. метр

1,308 куб. ярда

Меры сыпучих тел и жидкостей

Таблицы перевода физических величин

Таблицы позволяют осуществлять перевод физических величин - метрических, СИ, используемых в США и Великобритании. Во всех таблицах используется умножение.

ДЛИНА

Табл. 1. Метрическая система, соотношение единиц измерения длины

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

метр (m, м)

Табл. 2. Британская и Американская системы, соотношение единиц измерения длины

Пересчет

лига, лье

миля (ml)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

миля (mi)

Табл. 3. Перевод единиц измерения длины из Британско - Американской системы в Метрическую

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

лига, лье

миля (mi)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

ПЛОЩАДЬ

Табл. 4. Перевод единиц измерения площади

Пересчет

дюйм 2

фут 2

ярд 2

миля 2

дюйм 2

фут 2

ярд 2

миля 2

МАССА

Табл. 5. Перевод единиц измерения массы

Пересчет

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

ОБЪЕМ

Табл. 6. Перевод единиц измерения объема

Пересчет

литр (дм 3)

дюйм 3

фут 3

ярд 3

UK пинта

UK галлон

US пинта

US галлон

литр (дм 3)

дюйм 3

фут 3

ярд 3 764555 0.764555 764.555 46656 27 1 1345.429 168.1784 1615.793 201.974
UK пинта 568.261 0.0005683 0.568261 34.6774 0.020068 0.000743 1 0.125 1.20095 0.150119
UK галлон 4546.09 0.0045461 4.54609 277.42 0.160544 0.005946 8 1 9.6076 1.20095
US пинта 473.176 0.0004732 0.473176 28.875 0.01671 0.000619 0.832674 0.104084 1 0.125
US галлон 3785.41 0.0037854 3.785411 231 0.133681 0.004951 6.661392 0.832674 8 1

ДАВЛЕНИЕ

Табл. 7. Пересчте единиц измерения давления

Пересчет

мм рт.ст.

мбар

паскаль

дюйм вод.ст.

дюйм рт.ст.

мм рт.ст.

мбар

паскаль

Похожие публикации