Сечение поверхности шара. Шар как геометрическая фигура

Cтраница 1


Сечение шара плоскостью, проходящей через центр, называется большим кругом. Радиус большого круга равен радиусу шара.  

Сечение шара плоскостью всегда представляет собой круг. На рис. 153 показан шар, пересеченный горизонтальной плоскостью R и фронтально-проектирующей плоскостью Q, заданных следами Rv и Qv. Он проектируется на плоскость Н также в виде круга, имеющего общий центр с очерком горизонтальной проекции шара. Для определения крайних точек t и t большой ог. Промежуточные точки эллипса, например / i и / 2, могут быть получены приемом, описанным при решении аналогичной задачи при построении точек, лежащих на поверхности шара.  

Сечение шара любой вертикальной плоскостью, проходящей через центр, дает большой круг, называемый меридианом.  

Сечение шара плоскостью, расположенной от центра шара на расстоянии, меньшем радиуса, есть круг.  

Сечение шара плоскостью представляет собой круг. Плоскость, проходящая через центр шара, пересекает его по кругу, диаметр которого равен диаметру шара. Для построения изображения усеченного шара строят проекции осей эллипса, а также точек эллипса, лежащих на очерковых образующих шара.  

Сечение шара плоскостью, перпендикулярной его радиусу, делит радиус пополам.  

Сечение шара, проходящее через ось конуса - большой круг шара, в который вписан ДЛВ5 (рис. 185), где [ ЛВ ] - диаметр основания конуса.  

Сечение шара плоскостью, проходящей через основание пирамиды, есть круг, в который вписан ДЛВС. Так как С 90, то центр этого круга О лежит на середине гипотенузы.  

Сечение шара плоскостью, проходящей через центр шара, называется большим кругом. Кйсательной плоскостью к сфере (шару) называется плоскость имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Для того чтобы плоскость была касательной к сфере, необходимо и достаточно, чтобы эта плоскость была перпендикулярна к радиусу сферы и проходила через его конец.  

Поэтому сечение шара, проходящее через его центр и касающееся основания пирамиды, будет являться кругом, вписанным в треугольник SEF, где SE и SF - апофемы боковых граней, a EF - высота ромба.  

Рассмотрим сечение шара, проходящее через ось усеченного конуса. В сечении мы получим круг, в который вписана трапеция ABCD.  

Каждое сечение шара плоскостью, проходящей через его центр, дает большой круг.  

О Сечение шара, проходящее через ось конуса - это большой круг шара, в который вписан Д ABS (рис. 339), где [ АВ ] - диаметр основания конуса.  

Шар – это тело, состоящее из всех точек пространства, которые находятся на расстоянии, не большем данного от данной точки. Эта точка называется центром шара, а данное расстояние – радиусом шара. Граница шара называется шаровой поверхностью или сферой. Точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, который соединяет центр шара с точкой шаровой поверхности, тоже называется радиусом. Проходящий через центр шара отрезок, который соединяет две точки шаровой поверхности, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар является телом вращения, так же как конус и цилиндр. Шар получается при вращении полукруга вокруг его диаметра как оси.

Площадь поверхности шара можно найти по формулам:

где r – радиус шара, d – диаметр шара.

Объём шара находится по формуле:

V = 4 / 3 πr 3 ,

где r – радиус шара.

Теорема. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Исходя из данной теоремы, если шар с центром O и радиусом R пересечён плоскостью α, то в сечении получается круг радиуса r с центром K. Радиус сечения шара плоскостью можно найти по формуле

Из формулы видно, что плоскости, равноудалённые от центра, пересекают шар по равным кругам. Радиус сечения тем больше, чем ближе секущая плоскости к центру шара, то есть чем меньше расстояние ОК. Наибольший радиус имеет сечение плоскостью, проходящей через центр шара. Радиус этого круга равен радиусу шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью, называется большим кругом, а сечение сферы – большим кругом, а сечение сферы – большой окружностью.

Теорема. Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Плоскость, которая и проходит через точку А шаровой поверхности и перпендикулярна радиусу, проведённому в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Теорема. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

Прямая, которая проходит через точку А шаровой поверхности перпендикулярно к радиусу, проведённому в эту точку, называется касательной.

Теорема. Через любую точку шаровой поверхности проходит бесконечно много касательных, причём все они лежат в касательной плоскости шара.

Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Круг ABC – основание шарового сегмента. Отрезок MN перпендикуляра, проведенного из центра N круга ABC до пересечения со сферической поверхностью, – высота шарового сегмента. Точка M – вершина шарового сегмента.

Площадь поверхности шарового сегмента можно вычислить по формуле:

Объём шарового сегмента можно найти по формуле:

V = πh 2 (R – 1/3h),

где R – радиус большого круга, h – высота шарового сегмента.

Шаровой сектор получается из шарового сегмента и конуса, следующим образом. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется.

Шаровой сектор – это часть шара, ограниченная кривой поверхностью сферического сегмента (на нашем рисунке – это AMCB) и конической поверхностью (на рисунке – это OABC), основанием которой служит основание сегмента (ABC), а вершиной – центр шара O.

Объем шарового сектора находится по формуле:

V = 2/3 πR 2 H.

Шаровый слой – это часть шара, заключённая между двумя параллельными плоскостями (на рисунке плоскостями ABC и DEF), пересекающими сферическую поверхность. Кривая поверхность шарового слоя называется шаровым поясом (зоной). Круги ABC и DEF – основания шарового пояса. Расстояние NK между основаниями шарового пояса – его высота.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Ключевые слова: шар, сфера, центр шара, диаметр, касательная плоскость, плоскость симметрии,

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки.

Эта точка называется центром шара, а данное расстояние называется радиусом шара. Граница шара называется шаровой поверхностью или сферой. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально-противоположными точками шара. Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенного в эту точку, называется касательной плоскостью . Данная точка называется точкой касания. Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Теорема 20.3 . Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость .

Доказательство. Пусть - секущая плоскость и О - центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора 0X2 = 00"2+О"Х2. Так как ОХ не больше радиуса R шара, то, т. е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы - большой окружностью.

Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?

Решение . Если радиус шара R (рис. 455), то радиус круга в сечении будет

Отношение площади этого круга к площади большого круга равно

Представляет плоскую кривую - окружность, принадлежащую секущей плоскости.
Построить сечение сферы плоскостью общего положения β

Так как секущая плоскость общего положения, то эта окружность проецируется на плоскости проекций в виде эллипсов. Для построения эллипса необходимо знать размеры эллипса по его осям большой и малой.
Для тел вращения, к каковым относят цилиндр, конус и сферу, линия сечения может быть построена с характерными точками кривой к которым относятся:
- точки в которых меняется знак видимости;
- точки в которых ее координаты принимают максимальные и минимальные значения:
- x max ; x min ;
- y max ; y min ;
- z max ; z min ;
Использование характерных точек позволяет выполнить более точное построение линии пересечения поверхности вращения и плоскости.

Решение задачи на сечение сферы плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость β из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости β и проекцию шара. На следе плоскости β V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след. Линия сечения шара - точки A" 1 , B" 1 совпадает здесь со следом плоскости. Далее на фронтальной плоскости проекций V 1 построим центр окружности сечения - точку C" 1 которую получим восстановив перпендикуляр из центра шара (точка 0" 1 ) к [A" 1 B" 1 ] на их пересечении. Далее включаем обратное проецирование: через точки A" 1 , B" 1 и C" 1 проводим горизонтали h принадлежащие плоскости β , и на плоскости проекций H через центр шара проводим вспомогательную горизонтально-проецирующую плоскость γ 1 . Горизонтальный след плоскости γ 1 пресечет проекцию горизонтали h и определит в этом месте точку C` - центра окружности сечения. Горизонталь h` пересекает проекцию шара в точках D` и E` , определяя тем самым действительную величину отрезка [DE ] - большой оси эллипса. Аналогично строятся точки A` и B` , определяющие величину отрезка [A`B` ] - малой оси эллипса.

Проекции большой и малой оси эллипса на горизонтальную плоскость проекции H найдены, а это означает что эллипс - проекция окружности сечения на H может быть построен, смотри статью: Окружность

Повторим те же действия на для фронтальной плоскости проекций V и построим другой эллипс - проекцию окружности сечения на V .

Для нахождения точек указывающих границы видимости горизонтальной проекции окружности сечения

проводим через центр шара фронтально-проецирующую плоскость γ 2 V β по горизонтали h(h`, h") . Линия h` пересекается с горизонтальной проекцией окружности сечения по точкам 5,6 указывающим границу видимости. Точки окружности сечения расположенные на фронтальной проекции ниже следа плоскости γ 2 , на горизонтальной плоскости проекции H 5`, 6` ] - и будут на ней невидимы.

Для нахождения точек указывающих границы видимости фронтальной проекции окружности сечения. Проводим через центр шара горизонтально-проецирующую плоскость γ 1 H , которая пересечет плоскость β по фронтали f(f`, f") . Линия f" пересекается с фронтальной проекцией окружности сечения по точкам 7", 8" указывающим границу видимости. Точки окружности сечения расположенные на горизонтальной проекции выше следа плоскости γ 1 , на фронтальной плоскости проекции V будут располагаться слева от отрезка [7", 8" ] - и будут на ней невидимы.

Похожие публикации